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Three-Channel Infrared Imaging for
Object Detection in Haze

Beinan Yu , Yifan Chen , Si-Yuan Cao , Hui-Liang Shen , and Junwei Li

Abstract— Object detection is of wide application for its
capability in recognizing and locating targets in scenes. Under
heavy hazy conditions, however, the detection performance on
RGB images will greatly degrade since the image contents
are polluted. In this work, we propose an imaging system to
acquire three-channel images in the shortwave infrared (SWIR)
spectrum to facilitate object detection under hazy conditions.
The system captures SWIR images in the form of pseudo color
that are most suitable for detecting objects, such as pedestrians
and vehicles. Two different types of filters, i.e., liquid crystal
tunable filter (LCTF) and optical filters, are employed in our
imaging system design. We use the LCTF to acquire narrowband
hyperspectral images, which are fed into a band simulation
model to generate wideband images for optimal band selection.
We present a specific measure called recognition and localiza-
tion (RL) score to evaluate the detection performance of three-
band combinations. Based on the measure, optimal bands are
determined using an efficient searching algorithm. Then, we cus-
tomize three optical filters and install them on a filter wheel,
with which we can acquire three-channel images in the SWIR
spectrum. The effectiveness of our imaging system is evaluated on
a self-collected RGB-SWIR image dataset. Experimental results
indicate that, compared with the RGB images after haze removal,
the three-channel SWIR images acquired by our imaging system
are of higher quality and can achieve better object detection
performance under hazy conditions.

Index Terms— Band selection, dehazing, haze weather, hyper-
spectral imaging, infrared imaging, object detection, shortwave
infrared (SWIR).

I. INTRODUCTION

OBJECT detection, with its aim to locate targets in
images, is an important task in computer vision. It has

achieved great success in practical applications, such as sur-
veillance [1], [2], defect inspection [3]–[5], and pedestrian
detection [6], [7]. Recently, deep learning-based methods have
come to dominate the field of object detection with the
introduction of convolutional neural networks (CNNs) [8].
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R-CNN [9], using a CNN as the classifier, yields consid-
erable gains in accuracy, but its detection speed is slow.
Fast R-CNN [10] and Faster R-CNN [11] improve the detec-
tion speed but still cannot meet the real-time requirement.
YOLO [12] achieves real-time detection by employing a single
network to predict both the bounding box and class label
of each object in an image. The improved YOLO versions
[13], [14] work in a similar way and produce better detection
performance. However, although these detectors work well
on clear images, they may perform quite poorly on hazy
images that are of low contrast and faint color. Image fusion
[15]–[17] and dehazing methods [18]–[21] have been intro-
duced to enhance the quality of hazy images using image
priors or neural networks. However, the dehazing effect is
insignificant in the case of heavy haze and cannot obviously
benefit object detection.

Recently, infrared images are increasingly adopted in object
detection tasks when RGB information degrades or even
disappears. In general, most captured infrared images are
single-channel (panchromatic) or hyperspectral (more than
30 channels) ones. For example, single-channel infrared
images have been employed to extract infrared edgelet [22]
and thermal infrared (TIR) HOG [23] features under illu-
mination insufficient conditions. Principal component ther-
mography (PCT) [24] uses low-rank projection to extract
thermal features for defect detection. The two variants, Sparse-
PCT [25] and CCIPCT [26], can further improve detection
accuracy and computational efficiency. Moreover, features
from single-channel infrared data could also be combined
into RGB features to form multispectral aggregated channel
feature (MACF) [27]. The average miss rate can be reduced
by 15% in this manner. UGC model [28] alleviates the
modality discrepancy of RGB and TIR images and achieves a
good performance in pedestrian detection by using features
extracted from RGB and TIR images. STDFusionNet [29]
fuses the thermal targets and the visible texture structures for
better salient target detection. Hyperspectral images are also
useful for object detection. For example, the RGBN-shortwave
infrared (SWIR) system in [30] achieves 60%–70% accuracy
when using infrared hyperspectral images in powder detection,
whereas in RGB images, the powders are indistinguishable.
The aforementioned works validate that the extracted infrared
textural or spectral features are of great use in object detection.

For practical applications, band selection methods
[31]–[37], which aim to find a small number of bands that
are optimal for relevant vision tasks, have been introduced to
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Fig. 1. RGB and SWIR images of haze scenes acquired by our imaging
system. The detected pedestrians and vehicles are marked with bounding
boxes and confidence scores. Compared with the RGB images, the SWIR
images are more clear and produce higher object detection precision.

improve imaging or computational efficiency. For example,
OCF [34] clusters all bands according to their corresponding
contributions and selects the most significant one in each
cluster. E-FDPC [35] computes the product of local density
and intracluster distance of each band and chooses the
bands with anomalously large values. ONR [36] exploits
the neighboring structure of hyperspectral images for band
selection. FNGBS [37] chooses optimal bands according to the
local intensity and information entropy. Continuum removal
(CR), as a magnitude normalization approach, can explore
spectral bands with distinctive absorption or reflectance
characteristics [38], [39]. Based on CR, CIMDM [40] selects
the most discriminable bands for object identification.

In this work, we propose a three-channel wideband imaging
system in the SWIR spectrum for better object detection
performance in common hazy scenarios, with the assistance
of a multispectral imaging system. Three optimal widebands
are determined for pedestrian and vehicle detection since these
two targets are of most interest in visual surveillance tasks.
As exemplified in Fig. 1, our acquired SWIR images are
clearer than the RGB counterparts and offer higher accuracy
in object detection. As will be shown in the experiments
(Section IV), the sharpness of SWIR images can be improved
after haze removal, which will further benefit object detection.

To solve the problem of data lack in optimal band selection,
we present a linear model to faithfully render synthetic wide-
band images with various center wavelengths and bandwidths.
The model assumes that a wideband image can be regarded as
a linear combination of real narrowband (basis) images, where
the coefficients (weights) of narrowband images are solved
by simulating spectral transmittance. The synthetic images
simulated using our model are close to real captured ones
and thus can be used for data augmentation. We define a
specific quantitative measure based on the recognition and
localization (RL) accuracy of the YOLOv3 detector [13] to
evaluate the performance of each three-band combination.
Under its guidance, an efficient algorithm is employed to select
optimal bands first locally and then globally based on our self-
collected dataset.

In summary, the main contributions of this work are given
as follows.

1) We introduce a design scheme of a three-channel wide-
band SWIR imaging system, with the assistance of a
hyperspectral imaging system, for object detection in
haze conditions.

2) We present a local-to-global band selection algorithm to
choose the optimal widebands under the guidance of a
specific measure for best object detection performance.

3) Our experiments validate that, compared with common
RGB images, the three-channel SWIR images acquired
by our imaging system are of high quality and yield
improved object detection precision in haze conditions.

The rest of this article is organized as follows. Section II
introduces the framework and relevant issues of the proposed
three-channel SWIR imaging method. Section III elaborates
the implementation details of the band selection algorithm.
Section IV shows the experimental results, and finally,
Section V concludes this article.

II. PROPOESED THREE-CHANNEL

SWIR IMAGING METHOD

A. Motivation

It is known that the SWIR spectral characteristics benefit
the object detection task since the spectrum varies with dif-
ferent objects. Recent studies have proved the advantages of
hyperspectral images in object detection. However, the spectral
“fingerprints” of objects may be covered by other unrelated
spectral characteristics in the hyperspectral data. Moreover,
it is time-consuming to detect objects using all spectral bands,
and the hyperspectral data cannot meet the requirement of
the common detectors designed for RGB images. Inspired by
the red, green, and blue channels adopted for color imaging,
we select three SWIR bands with distinctive characteristics
for three-channel imaging. The three bands are selected with
a wide bandwidth for high SNR of images, meanwhile with
simple shapes (e.g., rectangle or Gaussian) to facilitate the
manufacture of optical filters. Based on the selected bands,
we can customize imaging systems with the specific color filter
array for the actual object detection applications.

Current band selection methods, such as OCF [34] and
CR [38], determine the optimal bands based solely on the
spectral characteristics. In this work, we argue that spatial
information is important to object detection and hence intro-
duce a specific measure to guide the band selection process.
Moreover, as our method is conducted on a simulated wide-
band image dataset, the selected bands will no longer be
limited to the original narrow bands. This is beneficial to a
practical three-band SWIR imaging system that requires fast
imaging speed and good image quality.

B. Overview

As shown in Fig. 2, the spectral transmittances of the optical
filters in the three-channel imaging system are optimally
determined with the assistance of a hyperspectral imaging
system. In the following, we introduce the details of the two
imaging systems, as well as their relationship.

The hyperspectral imaging system consists of an
SWIR camera and a liquid crystal tunable filter (LCTF).
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Fig. 2. Two SWIR imaging systems employed in this work. The hyperspectral imaging system acquires narrowband images using an LCTF. These images
are further linearly combined to simulate plenty of wideband images for optimal band selection. Three custom-made optical filters are installed on a filter
wheel, with which the three-channel imaging system captures three-channel SWIR images in form of pseudo color.

The full-width at half-maximum (FWHM) values of the
LCTF are between 15 and 25 nm, varying with the center
wavelengths of individual filters. The hyperspectral imaging
system acquires 79 narrowband images of a scene in the
SWIR spectrum from 920 to 1700 nm, by sequentially tuning
the LCTF with an interval of 10 nm. With these narrowband
images, we further simulate plenty of wideband images of the
same scene with various bandwidths and center wavelengths.
Then, three optimal bands are determined using a band
selection algorithm guided by a specific measure of object
detection precision.

The three-channel imaging system comprises an SWIR
camera as well as a filter wheel installed with three optical
filters. The optical filters are custom-made according to the
specification of the optimal three-band combination. The imag-
ing system acquires a three-channel image for the purpose of
object detection. As the optical filters are of widebands, the
three-channel imaging system can acquire high-quality three-
channel images in a relatively short exposure time.

C. Wideband Image Simulation

We use a hyperspectral imaging system to acquire nar-
rowband images in the SWIR spectrum for wideband image
simulation. According to the imaging model [41], the i th nar-
rowband image can be formulated as

Ii (p) =
∑

λ

l(λ)ρ(λ, p)ti (λ)s(λ)�λ (1)

where l(λ) denotes the spectral energy distribution of the light
source, ρ(λ, p) denotes the spectral reflectance at pixel p,
ti (λ) denotes the spectral transmittance of the i th filter, and
s(λ) denotes the spectral sensitivity of the sensor.

In this work, we assume that the candidate wideband
images for optimal band selection can be simulated from
narrowband spectral images using a simple linear model. This
assumption is based on two observations. First, the spectral
bands of the hyperspectral imaging system cover the whole
SWIR spectrum. Second, the spectral transmittances of adja-
cent narrowband filters overlap in the spectrum. Specifically,
we simulate the wideband image Ĩ by

Ĩ (p) =
∑

i

wi · Ii (p) (2)

where p represents pixel position, Ii denotes the i th real
narrowband image, and wi is the corresponding weight.

We consider l(λ) and s(λ) to be constant during the imaging
process. Denoting m(λ) � l(λ)s(λ), the imaging model (1) can
be simplified as

Ii (p) =
∑

λ

ρ(λ, p)ti (λ)m(λ)�λ. (3)

Then, (2) becomes

Ĩ (p) =
∑

i

wi ·
(∑

λ

ρ(λ, p)ti (λ)m(λ)�λ

)
=

∑
i

∑
λ

wiρ(λ, p)ti (λ)m(λ)�λ

=
∑

λ

ρ(λ, p)

(∑
i

wi ti(λ)

)
m(λ)�λ. (4)

By denoting

t̃(λ) =
∑

i

wi ti(λ) (5)
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Fig. 3. Illustration of wideband simulation. (a) Spectral transmittances of
the LCTF narrowband filters and a target wideband filter. (b) Comparison
of the target and simulated spectral transmittances. The IoU of these two
transmittances is 0.965. (c) Weights of narrowband filters computed using (8).

(4) can be rewritten as

Ĩ (p) =
∑

λ

ρ(λ, p)̃t(λ)m(λ)�λ. (6)

This means that the simulated wideband image Ĩ can be
regarded as an image acquired using a virtual filter with
spectral transmittance t̃(λ).

Consequently, to generate a specific wideband image Ĩ , our
aim becomes simulating t̃(λ) using the linear combination
of the spectral transmittances ti(λ) of narrowband filters,
as shown in Fig. 3. To simplify notation and computation,
we rewrite (5) in its vector–matrix form as

t̃ = Tw (7)

where t̃ denotes the spectral transmittance vector of virtual fil-
ters, T denotes the spectral transmittance matrix of the LCTF,
and w = (w1, w2, . . . , wn)

T. The weight vector w should
satisfy two practical conditions. First, with the computed
weight w∗, the simulated wideband spectral transmittance Tw∗
should be nonnegative. Second, the wideband transmittance
can be simulated by a limited number of narrowband ones.
Hence, we compute the weight as follows:

w∗ = argmin
w

‖̃t − Tw‖1

s.t. w � 0. (8)

The constraint w � 0 ensures the nonnegativity of the simu-
lated wideband transmittance, and the �1-norm ‖ · ‖1 ensures
the sparsity of the solution [see Fig. 3(c)]. With the computed
weight w∗, the wideband image can be simulated according
to (2).

With the above simulation, we generate 1310 wideband
images for each scene. In this work, we use N = 200 scenes,
and thus, our dataset has 262 000 synthetic images for band
selection. The bandwidths of virtual filters range from 50 to
240 nm with a step size of 10 nm, considering the image SNR
and spectrum utilization. The center wavelengths vary with a
step size of 5 nm, while the rising and falling edges of virtual
filters are kept within the SWIR spectrum. For simplification,
the transmittance of each virtual filter is designed to be in
an approximately uniform shape. The middle part of spec-
tral transmittance keeps constant, and the rising and falling
edges are of Gaussian shape where the standard deviation
σ is set following the FWHM of LCTF. The purpose of
this arrangement is to make the simulation of edges more

Fig. 4. Illustration of wideband image simulation. (a) Real image acquired
using an optical filter with the target transmittance. (b) Simulated wideband
image using a linear combination of narrowband images. (c) Difference map
of real and simulated images. Average intensity error is 3.8%.

Fig. 5. Normalized radiance of some objects and common backgrounds, com-
puted from hyperspectral images acquired by LCTF. The spatially averaged
spectral radiance [42] of each object is normalized by the maximal radiance
of an InfraGold whiteboard. The three dashed lines indicate the significant
bands determined using the procedure introduced in Section III-B.

appropriate. We use root-mean-squared error (RMSE) and
intersection over union (IoU) to evaluate the accuracy of
simulated transmittance. The mean IoU is 0.946 and the
mean RMSE is 0.086. These values verify the high similarity
between real and simulated transmittances. Fig. 4 shows an
example of a simulated wideband image, indicating that the
simulated image is close to the real one.

D. Band Selection Strategy

Spectral features are the fundamental characteristics of
natural objects, and the spectral difference can benefit object
detection. In some bands, the difference between spectral
radiance of background (building, plant, and road) and objects
(e.g., pedestrian and vehicle) is significant, as shown in Fig. 5.
By exploiting spatial and spectral information in the wideband
images, we select the three most representative bands that are
optimal for object detection.

In this work, we adopt an object detection-oriented strategy
that selects bands according to detection precision. To quan-
titatively guide the band selection, we introduce a specific
measure related to object detection, namely, RL score. Given
a three-channel image as input, the detector produces the
predicted confidence and location of each object in the image.
Confidence assesses the detection accuracy from the perspec-
tive of recognition. IoU of predicted and ground-truth locations
evaluates the localization precision. The confidence and IoU
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both range from 0 to 1, with a larger value representing
higher accuracy. To directly connect object detection and
band selection, we define the RL score of any three-band
combination of the nth scene as

S′
n(b1, b2, b3) = 1

Kn

Kn∑
k=1

ck · rk (9)

where (b1, b2, b3) denotes a three-band combination. bi rep-
resents the spectral transmittance of the i th band, which is
a vector with massive elements. Kn denotes the number of
objects of interest in the nth scene, and thus, the normalization
using 1/Kn in RL score guarantees the same contribution of
different scenes. For the kth object, its confidence is denoted
as ck and its IoU as rk . The ck is set to zero in case of
misclassification or detection missing. We note that the RL
score defined in (9) naturally incorporates the spectral and
spatial information in the context of object detection.

A larger RL score means a better object detection precision.
Band selection can be cast as the problem that finds the three
bands (b∗

1, b∗
2, b∗

3) with maximal score

(
b∗

1, b∗
2, b∗

3

) = arg max
(b1,b2,b3)

1

N

N∑
n=1

S′
n(b1, b2, b3) (10)

where N denotes the number of scenes.
However, the direct use of transmittance will result in a

huge computation burden. To cope with this issue, we use
bandwidth � and center wavelength λ to simplify computation
since the transmittance of simulated bands is designed in an
approximate uniform shape that can be well described by these
two parameters. Then, the RL score is of the form

Sn(θ1, θ2, θ3) = 1

Kn

Kn∑
k=1

ck · rk (11)

where θi � (�i , λi ) denotes the parameter pair of the i th band.
Accordingly, the problem of finding optimal three bands is
reformulated as(

θ∗
1 , θ∗

2 , θ∗
3

) = arg max
(θ1,θ2,θ3)

1

N

N∑
n=1

Sn(θ1, θ2, θ3). (12)

III. DETAILS OF OPTIMAL BAND SELECTION

As mentioned in Section II, the desired bands are optimally
selected using a dataset with plenty of synthetic wideband
images. Suppose that the dataset consists of N scenes, each
with M synthetic wideband images. The exhaustive band
searching process using all these images will be extremely
time-consuming due to the computationally intensive operation
of object detection. In the case that N = 200, M = 1310,
and each object detection operation costs 0.04 s, the total
computation time for all the N · C3

M = 7.48 × 1010 images
would be around 19 years even using six graphic processing
units (GPUs) NVIDIA RTX2080Ti. This is obviously imprac-
tical for real applications.

To deal with this problem, we introduce a two-stage algo-
rithm for band selection. It is based on the assumption that
the optimal three-band combinations would produce high RL

scores on most scenes. In the first stage, we collect distinctive
three-band combinations for individual scenes. In the second
stage, we compute the distributions of parameters λi and �i ,
1 ≤ i ≤ 3, and efficiently determine the optimal combination
by narrowing the searching ranges from the distributions. With
this treatment, the selection process can be accomplished in
three days using six GPUs, which is much shorter than the
exhaustive searching process.

A. Stage I: Selecting Bands for Individual Scenes

In the first stage, we select the well-performed three-band
combinations from individual scenes. By adopting a thresh-
old δ, we sequentially determine the three bands according
to the RL score. More specifically, for each scene, we start
with selecting the first band θi , then select the second band θ j

based on θi , and finally select the third band θk based on both
θi and θ j . The band overlap is restricted to be less than half
of the smallest bandwidth. For the computation of RL score,
we construct the three-channel SWIR images according to the
specified bands, with band duplicating when necessary. The
detailed band selection procedure for the nth scene is given
as follows.

Step 1: We calculate the RL scores S(1)
n (θi) for each single

band θi and find the maximal score Smax. Then, we form
the single-band set 	(1)

n by collecting the significant single
bands whose normalized scores S(1)

n (θi)/Smax are larger than
the threshold δ.

Step 2: We fix the first band θi ∈ 	(1)
n and compute the RL

scores for each two-band combination (θi , θ j). Similar to the
computation of 	(1)

n , we construct the two-band set 	(2)
n by

collecting the band combinations whose normalized scores are
larger than the threshold δ.

Step 3: For each two-band combination (θi , θ j ) ∈ 	(2)
n ,

we could find the three-band combination (θi , θ j , θk) with the
maximal RL score. We construct the final three-band set 	(3)

n
by collecting all these optimal three-band combinations.

With the above three steps, we can obtain the three-band
set 	(3)

n for the nth scene. Considering that there are totally
N scenes in the image dataset, the full three-band set is
constructed as 	(3) = {	(3)

1 ,	(3)
2 , . . . ,	(3)

N }. In this work,
we empirically set δ = 0.95 and obtain 	(3) containing
C0 = 172 319 three-band combinations.

B. Stage II: Selecting Final Bands

In the second stage, we compute the 1-D distributions
of individual parameters (λi and �i , 1 ≤ i ≤ 3) in the
full three-band set 	(3)

n , assuming that the parameters are
independent. In this way, the searching ranges of parameters
can be considerably reduced when compared to the original
6-D searching space of 	(3)

n .
Fig. 6 shows the distributions of the parameters, each

normalized with respect to its corresponding maximal count
of occurrence. It is observed that the distributions of center
wavelengths λi , 1 ≤ i ≤ 3, form obvious peaks. The
distributions of bandwidths �i (1 ≤ i ≤ 3) form plains
rather than obvious peaks. This means that bandwidths are
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Fig. 6. Distributions of parameters λi and �i (1 ≤ i ≤ 3) of the three-band
combinations in 	(3). The dashed lines indicate the positions specified by
threshold η = 0.8. The searching ranges are marked in red. Note that the
histograms corresponding to λ1 and λ3 are skewed. This is because the image
counts near the two wavelength ends (920 and 1700 nm) are less than those
in the middle range due to the setting of bandwidths.

Algorithm 1 Selecting the Optimal Three-Band
Combinations
Input: Data of N scenes (M images per scene), band

parameters � = {θ1, θ2, . . . , θM}.
Output: The optimal three-band set (θ∗

i , θ∗
j , θ

∗
k ).

for n = 1 to N do
Compute 	(1)

n ;
Compute 	(2)

n ;
Compute 	(3)

n ;
end
Compute the set 	(3) = {	(3)

1 ,	(3)
2 , . . . ,	(3)

N };
Compute the distributions of λ1, λ2, λ3, �1, �2, and
�3 from 	(3);
Compute (θ∗

i , θ∗
j , θ

∗
k ) using (13).

of lower sensitivity to the RL score when compared to center
wavelengths.

We use a threshold η to restrict the searching ranges of
parameters according to their distributions. Only the parame-
ters with frequencies larger than η, marked in red in Fig. 6,
are considered in the band selection process. Denoting the
searching range of λi as �(λi) and that of �i as �(�i), the
band selection can be formulated as(

θ∗
1 , θ∗

2 , θ∗
3

) = arg max
(θ1,θ2,θ3)

1

N

N∑
n=1

Sn(θ1, θ2, θ3) (13)

where λi ∈ �(λi) and �i ∈ �(�i), 1 ≤ i ≤ 3. In this
work, we empirically set η = 0.8, and consequently, the total
number of three-band combinations reduces to C = 35 280,
only around 20% of C0.

C. Algorithm Summary

To clarify, we summarize the algorithm for optimal
three-band selection in Algorithm 1.

IV. EXPERIMENTS

In the following, we first present the prototypes of the hyper-
spectral and three-channel imaging systems and introduce the

Fig. 7. Two SWIR imaging systems. (a) Hyperspectral imaging system
consisting of an SWIR camera and an LCTF. (b) Three-channel imaging
system consisting of an SWIR camera and a filter wheel installed with optimal
optical filters. By adopting a beam splitter, RGB images can also be acquired
using a color camera. (c) Spectral transmittances of the narrowband filters of
LCTF. (d) Spectral sensitivity of the SWIR camera. (e) One of the toy scenes
for image dataset collection.

acquired image dataset. We then discuss the results of our
three-band selection algorithm. Finally, we demonstrate the
effectiveness of our imaging system based on the evaluation
of image quality and object detection in haze.

To validate the effectiveness of our imaging system,
we compare three-channel SWIR images with their original
and dehazed RGB counterparts in terms of image quality.
We employ the dark channel prior (DCP) algorithm1 [18]
and DehazeNet2 [19] for image dehazing. We also employ
the spectral edge (h) algorithm3 [16] to fuse the RGB and
panchromatic SWIR images, whose aim is to improve the
scene visibility of RGB images.

A. Device and Dataset

Fig. 7 shows the hyperspectral and three-channel imag-
ing systems that work in the SWIR spectrum from 920 to
1700 nm. The spectral transmittances of the LCTF (Wayho
LCTF-S10) are of narrowband whose FWHMs are between
15 and 25 nm. The spectral sensitivity of the SWIR camera
(AVT Goldeye-033) is relatively high in the majority of the
spectrum range. As mentioned in Section II, the acquired
narrowband SWIR images are used to simulate the wideband
ones for optimal three-band selection, based on which the

1Source code available at https://github.com/noise-margin/Dehaze-
Algorithms

2Source code available at https://github.com/caibolun/DehazeNet
3Source code available at https://github.com/entropyzeroo/ImageFusion/

tree/master/SE

Authorized licensed use limited to: Zhejiang University. Downloaded on May 01,2022 at 07:07:48 UTC from IEEE Xplore.  Restrictions apply. 



YU et al.: THREE-CHANNEL INFRARED IMAGING FOR OBJECT DETECTION IN HAZE 5008513

Fig. 8. Example images in the dataset. (a) SWIR hyperspectral images.
(b) Three-channel SWIR images of two toy scenes. (c) RGB images and
three-channel SWIR images of natural scenes. In (b), images in the first
column are haze-free, while those in other columns are acquired under
different haze levels from thin to thick. In (c), images in the first two columns
are acquired under clear weather, while those in other columns are acquired
in haze.

three-channel imaging system can acquire high-quality three-
channel images with a filter wheel (FLI HS-625).

For the sake of image quality comparison, we install an
additional RGB camera in the three-channel SWIR imaging
system. By employing a beam splitter, the RGB and SWIR
cameras can acquire scene images at the same viewpoint.
We further align the RGB and three-channel SWIR images
on a pixel-to-pixel basis using a homography transformation.
To remove color cast, we adjust the brightness of SWIR
images such that the average intensities of individual channels
are identical.

We set up several toy scenes in our laboratory for image
dataset collection, with one example shown in Fig. 7(e). The
scenes include 13 urban and 11 rural ones, all placed in an
acrylic container of size 0.8 × 1 × 2.4 m3 during the imaging
process. A fog machine is used to generate hazy conditions
from thin to thick by controlling the spray time. Each toy
scene has a clear image and hazy images under five levels of
haze, as shown in Fig. 8(b).

Our image dataset contains three types of images, i.e., SWIR
hyperspectral images, three-channel SWIR images, and RGB
images, acquired under clear or haze conditions. Table I
shows the properties of the SWIR hyperspectral and three-
channel images. A hyperspectral image comprises 79 nar-
rowband images acquired using LCTF, while a three-channel
image consists of three wideband images acquired using
custom-made optical filters. The acquisition time of a hyper-
spectral image is longer than that of a three-channel image.
This is because a large number of narrowband images need
to be sequentially acquired for a hyperspectral image and also

TABLE I

PROPERTIES OF THE SWIR HYPERSPECTRAL AND THREE-CHANNEL
IMAGES ACQUIRED USING OUR SYSTEMS

TABLE II

IMAGES USED IN THE EXPERIMENTS

that the spectral transmittance of LCTF is relatively low. Fig. 8
shows some example images in the dataset. It is observed that,
under clear weather, the sharpness of three-channel SWIR
images is close to that of RGB images, despite some color
shift. Under the hazy condition, the three-channel SWIR
images are still of high contrast, while the RGB images
become very dim.

Table II lists the images used in the following four experi-
ments. The experiment optimal band selection uses the wide-
band images simulated using hyperspectral SWIR images. The
experiment evaluation of image quality employs the real toy
scene images for the quantitative evaluation of image quality
in haze. The experiments comparison of detectors and object
detection in haze use real-world RGB and SWIR images to
validate the performance of object detection.

B. Optimal Band Selection

As noted in Section III-B, the total number of three-band
combinations is C = 35 280 after restricting the parameter
searching ranges. The optimal three-band combinations are
determined using Algorithm 1 under the criterion of RL
scores of YOLOv3 [13], each of which is computed from
N = 200 scenes. Fig. 9 shows that the mean RL scores
of the combinations are in the range (0.76, 0.89), and the
means and variances of RL scores are negatively correlated.
This implies that the top-ranked combinations can perform
comparatively well on various scenes, which is desired for
practical applications.

Table III lists the parameters of the Top-5 combinations. It is
observed that the center wavelengths of individual filters are
very close and the bandwidths are exactly the same. Accord-
ingly, their corresponding RL scores are very close, all above
0.885. Based on this observation, we design and manufacture
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Fig. 9. Evaluation of the total 35 280 three-band combinations. (a) Mean RL
scores of all three-band combinations, sorted in descending order. (b) Vari-
ances of the RL scores of the sorted three-band combinations.

TABLE III

PARAMETERS OF TOP-5 THREE-BAND COMBINATIONS

Fig. 10. Spectral transmittances of the Top-1 three-band combination. The
transmittances are used in designing and manufacturing optical filters, which
are installed in the three-channel SWIR imaging system.

three optical filters for the SWIR three-channel imaging sys-
tem, using the parameters of the Top-1 combination (1040,
1260, and 1570 nm). Fig. 10 shows the corresponding spectral
transmittances of the filters. Fig. 5 shows that these bands
are the most distinctive ones for a wide range of objects,
not limited to pedestrians and vehicles. This indicates that
although the optimal bands are selected under the guidance of
our specific RL score, they will also work well for common
object detection.

We compare our three-band selection algorithm with the
state-of-the-art approaches, including OCF4 [34], E-FDPC5

[35], ONR6 [36], FNGBS7 [37], and CR [38] in the object
detection tasks. For CR, we first remove the continuum of

4Source code available at https://github.com/tanmlh/Optimal-Clustering-
Framework-for-Hyperspectral-Band-Selection

5Source code available at https://github.com/senjia1980/EFDPC
6Source code available at https://github.com/tanmlh/Optimal-Neighboring-

Reconstruction-for-Hyperspectral-Band-Selection
7Source code available at https://github.com/qianngli/FNGBS

TABLE IV

SELECTED BANDS AND MAP VALUES OF DIFFERENT BAND
SELECTION ALGORITHMS

Fig. 11. Precision–recall curves of object detection for OCF [34],
E-FDPC [35], ONR [36], FNGBS [37], CR [38], and our three-band selection
algorithm.

the spectral radiance of different objects and then select
three bands with the largest spectral differences. Table IV
lists the selected bands by these algorithms and the corre-
sponding mean average precision (mAP) of object detection.
It is observed that our algorithm produces the best mAP.
Fig. 11 shows the precision–recall curves of the different band
selection algorithms. Both the mAP and the precision–recall
curves indicate that our algorithm outperforms the others.

The detailed analysis shows that the clustering-based algo-
rithms, OCF [34] and E-FDPC [35], select a band located
at the atmospheric absorption area (near 1470 nm) that has
little discriminative capability. ONR [36] is also affected
by the absorption area during band selection. FNGBS [37]
selects bands with a significant spectral difference, though
it is not optimal for object detection. CR [38] selects the
bands according to the spectral characteristics of the objects.
The two selected bands (1000 and 1040 nm) are close and
possess duplicating spectral information, and consequently, its
detection precision is limited. In comparison, our algorithm
produces the highest precision due to its capability of exploit-
ing both spatial and spectral information under the guidance
of the RL score.

C. Evaluation of Image Quality in Haze

The three-channel SWIR images are compared with RGB
images and their dehazed and fused counterparts, both quali-
tatively and quantitatively. Fig. 12 shows the SWIR and RGB
images of two urban and two rural toy scenes under clear
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Fig. 12. Images of toy scenes. The first two rows are urban scenes. The last two rows are rural scenes. (a) RGB ground truth. (b) Original hazy RGB
images. (c) Dehazed RGB images using DCP algorithm [18]. (d) Dehazed RGB images using DehazeNet [19]. (e) RGB images after SpE fusion [16]. (f) Hazy
three-channel SWIR images. (g) SWIR ground truth.

TABLE V

AVERAGE PSNR, SSIM, RMSE, SAM, AND GMSD VALUES OF RGB AND SWIR IMAGES OF THE URBAN AND RURAL TOY SCENES

and haze conditions. It is observed that the RGB images
are of low contrast even after dehazing [18], [19] or image
fusion [16]. In comparison, the three-channel SWIR images
are less affected by haze and the structural details are clearly
visible.

Table V lists the average PSNR, SSIM, RMSE, SAM, and
GMSD values of RGB and SWIR images of 13 urban and
11 rural toy scenes. In metric computation, we use the images
acquired under clear weather as ground truths. It is observed
that the three-channel SWIR images are of higher quality
compared to all the RGB ones.

D. Comparison of Different Detectors

We evaluate the performance of YOLOv38 [13] and Faster
R-CNN9 [11] on our three-channel data. YOLOv3 has been
employed for optimal band selection, and Faster R-CNN is
deployed to validate whether our three-channel SWIR imaging

8Source code available at https://pjreddie.com/darknet/yolo
9Source code available at https://github.com/endernewton/tf-faster-rcnn

Fig. 13. Precision–recall curves of different detectors, either pretrained or
fine-tuned, on our three-channel image dataset.

system also performs well when using other detectors. Based
on the pretrained weights, we fine-tune the detectors using
RGB-SWIR images of 200 scenes (100 clear and 100 hazy
ones) and test the detectors on the other 100 clear and 100 hazy
scenes.

Fig. 13 shows the precision–recall curves of YOLOv3
and Faster R-CNN on RGB and SWIR images. YOLOv3
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TABLE VI

MAP OF DIFFERENT DETECTORS ON RGB AND SWIR IMAGES UNDER
CLEAR AND HAZY CONDITIONS

and Faster R-CNN produce a similar performance. On RGB
images, the pretrained detectors produce slightly higher preci-
sion than on the SWIR images since the pretrained detectors
are trained using RGB images. After fine-tuning the detectors,
the precision on SWIR images is significantly higher than that
on RGB images.

Table VI presents the mAP of YOLOv3 and Faster R-CNN
under clear and hazy conditions. It is observed that both
detectors produce higher mAP after fine-tuning, especially on
those hazy images. Specifically, the pretrained detectors obtain
a higher mAP on SWIR images than on RGB ones since SWIR
images have more details for object detection under hazy
conditions. Furthermore, the margin of the precision on SWIR
and RGB images is enlarged after fine-tuning the detectors.

E. Object Detection on Hazy and Dehazed Images

We evaluate object detection on 300 three-band images
acquired in real-world hazy scenes. As different detectors
perform similarly on our dataset, hereafter, we employ the fine-
tuned YOLOv3 to detect objects in RGB and SWIR images.

We evaluate the detection performance on both hazy and
dehazed SWIR images. The DCP [18] dehazing algorithm is
employed to process our three-channel SWIR images. To meet
the condition of DCP that at least one color channel has very
low intensity at some pixels, we preprocess the hazy SWIR
image H as

H̃ = H−b · 1 (14)

where b denotes the minimal element of H. Then, we compute
the dehazed image using the DCP algorithm as J̃ = DCP(H̃).
Considering that J̃ appears quite dark due to the preprocess-
ing (14), we compute the final dehazed SWIR image J by
normalization

J = J̃

J̃m
(15)

where J̃m is the maximal element of J̃.
As object detection in panchromatic infrared images is

quite common [22], [23], we also evaluate the detection
performance on panchromatic SWIR images acquired in the
SWIR spectrum ranging from 920 to 1700 nm. To meet the
input requirement of detectors, we replicate the single-channel
panchromatic SWIR image three times to form a three-channel
image for object detection.

Fig. 14 shows the precision–recall curves of SWIR and RGB
images. It is observed that the dehazing and image fusion

Fig. 14. Precision–recall curves of object detection for RGB and SWIR
images. RGB images are the original ones and the processed ones by DCP [18]
dehazing, DehazeNet [19], and SpE fusion [16]. SWIR images include the
panchromatic images, three-channel images, and the dehazed three-channel
images using DCP [18].

Fig. 15. RL scores of RGB and SWIR images. RGB images are the original
ones and the processed ones by DCP dehazing [18], DehazeNet [19], and SpE
fusion [16]. SWIR images include the panchromatic ones, and the original and
dehazed three-channel ones.

algorithms for RGB images only achieve slight improvements
in object detection. On the contrary, the detector produces
higher precision on SWIR images. Due to the extraction of
distinctive spectral information, we obtain higher precision
on three-channel SWIR images when compared with the
panchromatic ones. It is observed that the dehazing operation
is beneficial to object detection on SWIR images.

We compare the object detection accuracy under different
haze densities in terms of RL score. Generally, the RL score
decreases when the haze level changes from thin to thick.
Fig. 15 shows the RL scores of various hazy scenes, which
are sorted in descending order for ease of comparison. It is
observed that the RL scores of the three-channel SWIR images
are higher than those of RGB and panchromatic SWIR images
under all hazy conditions. In the case of thin haze, the RL
scores of three-channel SWIR images are comparable to those
of RGB images and higher than those of panchromatic SWIR
images. When the haze becomes thicker, the RL scores of
three-channel SWIR images decrease gradually but are always
higher than those of other images. The reason is that the
three-channel SWIR images have more textures than the RGB
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Fig. 16. Prediction of four different hazy scenes output by YOLOv3 [13]. (a) Original RGB images. (b) Dehazed RGB images using DCP [18]. (c) Dehazed
RGB images using DehazeNet [19]. (d) RGB images after SpE fusion [16]. (e) Three-channel SWIR images. (f) Dehazed three-channel SWIR images using
DCP [18].

TABLE VII

MAP AND AVERAGE RL SCORES OF VARIOUS SWIR
IMAGES AND RGB IMAGES

ones and own more spectral information than the panchromatic
ones.

Fig. 16 shows the detection results of four real-world
scenes. For RGB images, the detection performance can-
not be improved after either dehazing [18], [19] or image
fusion [16] because the image quality has not been much
improved. In comparison, the detectors identify more objects
and produce higher confidence scores on original and dehazed
SWIR images.

Table VII lists the mAP and the average RL scores of
RGB and SWIR images of the 300 real-world hazy scenes.
The mAP and RL scores of SWIR images are significantly
higher than those of the RGB images. Compared with the
conventional panchromatic SWIR images, we obtain better
detection performance on the three-channel ones. Notice-
able improvements in mAP and RL score are achieved

on the three-channel SWIR images after applying DCP
dehazing.

V. CONCLUSION

We have proposed a three-channel SWIR imaging system
for object detection in haze with the assistance of a hyperspec-
tral imaging system. For optimal band selection, we simulate
plenty of wideband synthetic images using a number of
narrowband images acquired by the hyperspectral imaging
system. The optimal three-band combination is determined
using an efficient searching algorithm, guided by a specific
measure referred to as RL score. Experimental results validate
that the three-channel SWIR images, which are acquired
by our proposed imaging system, perform better than RGB
images in object detection.

A limitation of our band selection algorithm is its slow
computation speed since it needs to compute the RL score
for all three-band combinations. In our future work, we plan
to speed up the band selection process by incorporating both
spectral and spatial information. In addition, we will also aim
to recover the naturalness of SWIR images by learning the
mapping between the SWIR and visible spectra.
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