
Aggregating Feature Point Cloud for Depth Completion

Zhu Yu1, Zehua Sheng1, Zili Zhou1, Lun Luo1,
Si-Yuan Cao2,1∗ Hong Gu4, Huaqi Zhang4, Hui-Liang Shen1,3*

1College of Information Science and Electronic Engineering, Zhejiang University
2Ningbo Innovation Center, Zhejiang University

3Key Laboratory of Collaborative Sensing and Autonomous Unmanned Systems of Zhejiang Province
4vivo Mobile Communication Company Ltd.

{yu zhu, shengzehua, zhou zili, luolun, cao siyuan, shenhl}@zju.edu.cn
{guhong, zhanghuaqi}@vivo.com

Abstract

Guided depth completion aims to recover dense depth
maps by propagating depth information from the given pix-
els to the remaining ones under the guidance of RGB im-
ages. However, most of the existing methods achieve this
using a large number of iterative refinements or stacking
repetitive blocks. Due to the limited receptive field of con-
ventional convolution, the generalizability with respect to
different sparsity levels of input depth maps is impeded.
To tackle these problems, we propose a feature point cloud
aggregation framework to directly propagate 3D depth in-
formation between the given points and the missing ones.
We extract 2D feature map from images and transform the
sparse depth map to point cloud to extract sparse 3D fea-
tures. By regarding the extracted features as two sets of fea-
ture point clouds, the depth information for a target location
can be reconstructed by aggregating adjacent sparse 3D
features from the known points using cross attention. Based
on this, we design a neural network, called as PointDC, to
complete the entire depth information reconstruction pro-
cess. Experimental results show that, our PointDC achieves
superior or competitive results on the KITTI benchmark and
NYUv2 dataset. In addition, the proposed PointDC demon-
strates its higher generalizability to different sparsity levels
of the input depth maps and cross-dataset evaluation.

1. Introduction

In recent years, dense depth maps have shown great im-
portance in various computer vision tasks, including au-
tonomous driving [39, 7], 3D object detection [48, 47], aug-
mented reality[22, 9, 55] and 3D reconstruction [11, 35].
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Figure 1. The diagram of feature point cloud aggregation module
of our PointDC. It reconstructs 3D information for the 2D feature
map by aggregating from the 3D features, where the 2D and 3D
features are viewed as two sets of feature point clouds. Compared
with the state-of-the-art depth completion approach NLSPN [31],
our PointDC can still achieve better results although the details in
the RGB image are hard to discriminate by human eyes.

However, commercially available depth sensors, such as Li-
DARs or RGB-D cameras, typically produce highly sparse
depth maps that cannot accurately capture the full 3D infor-
mation of the scene. To address this limitation, recent re-
searches [20, 42, 10] have focused on directly reconstruct-
ing dense depth maps from sparse observations. Despite
significant progress, this approach remains challenging due
to the ill-posed nature of the problem, which often leads to
unsatisfactory accuracy. In comparison, a more promising
solution is to incorporate an additional RGB image captured
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in the same scene. Based on the auxiliary structural infor-
mation, it is much easier to complete the sparse depth map.
This approach, known as guided depth completion, has be-
come one of the important steps for the aforementioned vi-
sion applications.

Given a sparse depth image, guided depth completion es-
sentially aims to propagate depth information from known
pixels to the remaining ones under the guidance of an RGB
image [5, 31]. Generally, it can be classified into two
categories. The first one [5, 6, 31, 27, 16, 54, 41, 52]
treats sparse depth maps as ordinary images and formu-
lates guided depth completion as a guided image restoration
task, where depth values are regarded as pixel intensities.
In this case, the information is propagated by learning vari-
ous types of affinities among neighboring pixels from RGB
images [5, 6, 31, 27] or constructing content-adaptive neu-
ral networks [54, 41, 52]. However, these methods are pri-
marily designed to operate in 2D space and therefore strug-
gle to fully exploit the 3D geometry information that has
been demonstrated to be beneficial for depth estimation in
both multi-view stereo (MVS) and stereo matching meth-
ods [14, 13]. To explicitly consider 3D geometry informa-
tion, the second category of methods [23, 21, 4, 17] extracts
3D features using point cloud convolutions [46, 1] or by in-
terpreting depth information with plane-residual representa-
tion [23, 21]. This category of methods propagate informa-
tion by employing either 2D or 3D convolution. In a word,
both types of methods propagate depth information in a pro-
gressive or an iterative manner due to limited receptive field.
Consequently, they may be less robust in cases where there
are varying levels of point sparsity, as it becomes increas-
ingly difficult to propagate information between distant pix-
els when the densities of sparse points decrease.

In this work, we propose a feature point cloud aggrega-
tion framework to directly propagate the given sparse depth
information to the entire image. In this way, our framework
can overcome the limited receptive field of conventional
convolutions and generalize well to different sparsity levels
of the input depth maps. Given the inputs, we transform the
depth map to point cloud using the camera intrinsic matrix.
Then we extract sparse 2D features from the images and
3D features from the point cloud. We hypothesize that the
2D features only give visual descriptions of the scene while
the 3D features contain the extra 3D information. Gener-
ally, similar visual contents tend to have similar depth val-
ues within neighboring regions. Therefore, the 3D depth
information of a target location can be reconstructed from
the adjacent sparse 3D features using cross-attention strat-
egy. By referring the 2D and sparse 3D features as the 2D
and the sparse 3D feature point clouds, the reconstruction
process can be achieved in a cross-attention manner with
higher flexibility.

Based on the above analysis, we design a neural network,

called as PointDC, to handle the depth completion task.
First, PointDC generates the 2D and 3D feature point clouds
with a UNet [36] and several stacked local self-attention
transformer blocks, respectively. Then, for a target loca-
tion, its 3D depth information is reconstructed based on its
neighboring 3D feature points by the feature point cloud
aggregation module which is mainly a local cross-attention
transformer block. A diagram of this module is shown in
Fig. 1(a). Finally, from the reconstructed dense 3D feature
point cloud, PointDC generates the final dense depth map.

In summary, the main contributions of this work are as
follows:

• We propose a feature point cloud aggregation frame-
work which extracts both 2D and sparse 3D features
for depth completion. It reconstructs the depth infor-
mation for a target location by the adjacent sparse 3D
feature points, in which each location can capture 3D
information from the sparse 3D features directly re-
gardless of the sparsity level of the input depth maps.

• We design a novel local transformer by regarding the
extracted features as two sets of point clouds, which
is used to exploit 3D geometry information and recon-
struct the depth information for each target location.

• Experimental results show that our PointDC achieves
better or comparable results compared to state-of-
the-art depth completion methods. In addition, our
PointDC demonstrates its higher generalizability to
different sparsity levels of the input depth maps and
cross-dataset evaluation.

2. Related Work
Depth Completion. Depth completion restores dense

depth maps by propagating information from the observed
pixels to unobserved ones [20]. Early depth-only meth-
ods [20, 42, 10] generate dense depth maps using only
one single sparse image by designing appropriate operators
(e.g. sparse invariant CNN [42], normalized convolutional
neural network (NCNN) [10]). However, the information
propagation of these methods depends on pixel locations,
whose performance is limited when the input depth maps
are highly sparse.

To attain higher performance, guided depth completion
introduces an additional RGB image to assist the comple-
tion process. In this case, the information propagation can
be guided by auxiliary structural information of the RGB
image, significantly boosting the results compared to those
depth-only methods. Existing guided depth completion ap-
proaches can be roughly classified into two categories. The
first one regards it as a guided image restoration task, which
propagates information by regular or dynamic convolution.
S2D [30] directly concatenate RGB and depth images and
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then feed them to a simple U-Net [36]. Following the spa-
tial propagation network (SPN) [26], SPN-based methods
[5, 6, 31, 27] first estimate a rough result, and then re-
fine it by local, non-local, or other modified types of affini-
ties. A few advanced methods [52, 41, 54] fuse multi-modal
features by constructing content-adaptive neural networks.
Auxiliary tasks [20, 32, 51] are also adopted to better super-
vise the learning process. However, these methods are un-
able to capture 3D geometry information which has shown
to be useful for depth estimation in [14, 13].

Different from the above methods which mainly con-
duct completion in the 2D image space, the other type of
works attempt to consider 3D geometry information explic-
itly. Base on the plane-residual representation [23], some
methods [23, 21] borrow the cost volume concept to ex-
tract 3D information from the sparse depth maps and for-
mulate depth prediction as a classification-regression prob-
lem. FuseNet [4] and Point-Fusion [17] extract 3D features
using point cloud convolution [46, 1] and directly consoli-
date 2D and 3D features. Similar to the first category, the
3D information propagation of the second is fulfilled by 2D
or 3D convolution. To sum up, to propagate information to
entire image, both types of methods need to achieve this in
a progressive or an iterative manner due to limited recep-
tive field. Therefore, these methods may be less robust to
different levels of points sparsity.

Vision Transformer. In recent studies, ViTs [8, 28] have
demonstrated huge potential in various vision tasks due to
larger receptive field, including image classification [3, 24],
image segmentation [40, 25], dense prediction [33, 50], etc.
DPT [33] adopts ViT[8] as a backbone for encoding global
information at multiple stages for depth estimation and se-
mantic segmentation. Based on the long-range modeling
property of the attention mechanism, GMFlow [50] refor-
mulates optical flow estimation as a global matching prob-
lem. RHWF [2] employs the attention focusing mech-
anism, which captures the intra/inter correspondence in-
formation in a global→nonlocal→local manner. Guide-
former [34] firstly introduces transformer into depth com-
pletion, which enlarges the receptive field for propagating
information in the long range. However, this method also
regards guided depth completion as a guided restoration
task, which can’t exploit 3D geometry information. In this
work, we devise the transformer-based PointDC to effec-
tively extract and propagate the 3D geometry information
contained in the input sparse depth maps.

3. Problem Definition
Given a sparse depth image S ∈ RH×W and an RGB

image I ∈ RH×W×3, guided depth completion aims to re-
store a dense depth map D ∈ RH×W . The main purpose
of this task is to propagate the depth information from the
given points to the entire image under the guidance of the

(a) Progressive 
information propagation

(b) Our information 
aggregation

......

Figure 2. Comparison between the information propagation pro-
cess of previous methods and our PointDC. Previous methods re-
quire to propagate information in a progressive or an iterative man-
ner while our PointDC can directly propagate the depth informa-
tion from the given points to the entire image.

RGB image. Based on the assumption that similar visual
contents tend to have similar depth values within neighbor-
ing regions [41], we restore the depth value of a target lo-
cation by aggregating the known depth information using
the visual similarity between the target point and the given
points.

Formally, the 2D feature map F can be obtained as fol-
lows

F = f (S, I) ∈ RH×W×C , (1)

where f (·) denotes the 2D feature extraction function. As
F is computed in the 2D space, we hypothesize that it
mainly represents the 2D visual information. Then, we in-
dex F using the positions where the values in S are given
to obtain Hi ∈ RM×C and transform S to point cloud
P ∈ RM×C via the camera intrinsic matrix. M is the num-
ber of given points. Both Hi and P serve as the inputs of the
the 3D geometry information encoding function g (·) to fur-
ther extract the extra 3D information contained in the point
cloud. This process can be formally denoted as follows

H = g (P,Hi) ∈ RM×C . (2)

As Hi is indexed from the 2D feature map and encoded
in the 3D space with P to capture 3D geometry informa-
tion, we hypothesize that H contains both 2D visual and 3D
depth information. For a specific pixel of F, estimating its
depth value equals reconstructing its 3D depth information.
Similar to point cloud completion [53], the reconstruction
process can be fulfilled by aggregating from the points in
H.

By reshaping F to a shape of HW ×C and denoting the
reshaped result as Fl, H and Fl can be viewed as two sets
of feature point clouds, where the former contains only 2D
visual information and the latter contains full information.
We denote the set of the points whose depth information has
been reconstructed as F̂l ∈ RHW×C . For simplicity, we
name Fl as 2D feature point cloud, H as sparse 3D feature
point cloud, and F̂l as dense 3D feature point cloud. Let de-
note the index of Fl and F̂l as x. To obtain F̂l (x) ∈ RC×1,
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Figure 3. Schematics and detailed architectures of PointDC. (a) Overall architecture of our PointDC. (b) Detailed structure of the 3D
information extraction block. (c) Diagram of the local attention mechanism. (d) Details of the local self-attention transformer and the local
cross-attention transformer.

we first compare the feature similarity of Fl (x) ∈ RC×1

with respect to all sparse 3D feature points of H by comput-
ing their correlations. This can be implemented efficiently
with a simple matrix multiplication

W =
HFl (x)√

C
∈ RM×1, (3)

where W represents the correlation matrix. Each element
of W measures the visual similarity between the target
point and one of the sparse 3D feature points. Then, we
normalize W with the softmax operation

Ŵ = softmax (W) ∈ RM×1. (4)

Finally, F̂l (x) can be computed by

F̂l (x) = H⊤Ŵ ∈ RC×1, (5)

To sum up, the overall reconstruction process can be formu-
lated as follows

F̂l (x) = H⊤ softmax

(
HFl (x)√

C

)
. (6)

In this way, each 2D feature point Fl (x) can directly
captures 3D geometry information from the sparse 3D fea-
ture point cloud H based on their visual similarity regard-
less of the sparsity level of the input depth maps. A sim-
ple diagram of this process is shown in Fig. 2(b). In com-
parison, previous methods require to propagate informa-
tion in a progressive or an iterative manner, as shown in

Fig. 2(a). Besides, only the feature points within neighbor-
ing regions contribute to the result mostly, so it’s unneces-
sary to compute the correlation globally. Therefore, we re-
construct depth information of Fl (x) by using its k neigh-
boring points in H, where the distance between two points
is measured by the euclidean distance of their coordinates.
Then, Eq. 6 is reformulated as

F̂l (x) = H (N (x))
⊤
softmax

(
H (N (x))Fl (x)√

C

)
,

(7)
where N (x) denotes the indices of the k neighboring points
of Fl (x) in H.

4. PointDC

The schematics of proposed PointDC is shown in Fig. 3.
It mainly consists of three modules, i.e., feature extraction,
feature point cloud aggregation and depth reconstruction.
Given an RGB image and a sparse depth image, the feature
extraction module extracts the 2D feature map F and the
sparse 3D features H. Then the feature point cloud aggre-
gation module reconstructs the 3D information of the points
of Fl by aggregating the points of H to generate dense 3D
features F̂l. Finally, the depth reconstruction module re-
gresses the final dense depth map D̂ from F̂.

4.1. Feature Extraction

As shown in Fig. 3(a), the feature extraction module con-
sists of two branches, a 2D branch that extracts 2D fea-
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ture map F and a 3D branch that extracts sparse 3D fea-
tures H. In the 2D branch, following most of the existing
methods [31, 27], the 2D feature extraction network is a
UNet [36] which adopts ResNet-34 [15] as the backbone.
First, we concatenate the RGB and sparse depth images,
and then feed them into the 2D feature extraction network
to generate the 2D feature map F. Next, we obtain sparse
point clouds P ∈ RM×3 from the sparse depth maps using
the camera intrinsic matrix and extract the initial sparse 3D
features Hi from F. In the 3D branch, the 3D information
extraction block takes both P and Hi as inputs, and outputs
the 3D features H. The detailed architecture of this block
is shown in Fig. 3(b). Linear embedding is used to extract
features FP ∈ RM×C from P. Then we sum FP to Hi to
get HP . Finally, N stacked local self-attention transformer
(LST) blocks are used to encode HP for better exploiting
3D geometry information and generate H. In this work, N
is empirically set to 4.

The details of LST are shown at the top of Fig. 3(d).
We do not simply compute the global attention considering
the computational complexity. Therefore, before sending
HP to the transformer blocks, we first concatenate it with
P which serve as coordinates of HP to measure the dis-
tances between two feature points so that each point only
requires k1 of its neighboring points for attention comput-
ing. A simple diagram of the attention mechanism is shown
in Fig. 3(c). Let denote y = (x, y, z) the index of H, the
local self attention mechanism can be formulated as

H (y) = HP (N (y))
⊤
softmax

(
HP (N (y))HP (y)√

C

)
,

(8)
where N (y) denotes the set of k1 nearest neighboring in-
dices of y. In this work, we set k1 to 9 following [4, 17].

4.2. Feature Point Cloud Aggregation

After obtaining F and H, we reconstruct the 3D infor-
mation of the elements in F based on H using a local cross
attention transformer (LCT) block. The detailed architec-
ture of this block is shown at the bottom of Fig. 3(d). Before
sending F and H to the LCT block, we first reshape F to
the 2D feature point cloud Fl. We concatenate coordinates
for Fl. To keep the same dimension of coordinates with
LST, instead of simply using 2D image plane coordinates
x = (i, j), we add an additional dimension to x. We denote
x̂ = (i, j, d∗) as the new coordinate, where d∗ a constant
value. The forms of coordinates are the same for H. Then
the 3D information of the 2D feature point cloud is recon-
structed by the LCT blocks. The cross attention mechanism
can be formulated as

F̂l (x̂) = H (N (x̂))
⊤
softmax

(
H (N (x̂))Fl (x̂)√

C

)
,

(9)

where N (x̂) denotes the set of k2 nearest neighboring in-
dices of x̂ in the 3D feature point cloud. In this work, k2 is
empirically set to 9.

4.3. Depth Reconstruction

In the preceding subsections, we have discussed the pro-
cess of reconstructing dense 3D feature point cloud F̂l.
To generate the final result, we first reshape F̂l to a map
F̂ ∈ RH×W×C . Then we suppress redundant channels of
F̂ by a channel attention block and finally generate the re-
covered dense depth map D̂ with a convolution layer.

4.4. Loss Function

We train our network with a combination of L1 loss, L2

loss and gradient loss Lgrad:

L = L1 + γL2 + µLgrad, (10)

where L1 and L2 are L1 norm and L2 norm between the es-
timated result D̂ and the ground truth D, respectively. Lgrad

penalizes the errors on edges. γ and µ are the coefficients
to control the trade-off between the three losses. γ is set
to 0 for NYU Depth v2 dataset [37] and 1 for KITTI DC
dataset [43]. µ is empirically set to 0.7 for all datasets.

5. Experiments
5.1. Datasets and Metrics

NYU Depth v2 dataset. The NYU-Depth-v2 dataset
[37] is captured by Microsoft Kinect sensor, containing both
RGB and depth sequences of 464 indoor scenes. Following
previous work [31, 52, 45], we adopt a subset of 50K im-
ages as training set and evaluate on the official labeled test
set. For training and testing, we first down-sample images
to 320 × 240 and then center-crop them to 304 × 228 to
remove the invalid regions.

KITTI Depth Completion Dataset. The KITTI Depth
completion dataset [12, 43] is a large outdoor dataset cap-
tured by a driving vehicle. It provides 86K RGB and Li-
DAR pairs for training, 1K pairs for validation and the re-
maining 1K pairs for testing. As the depth maps are cap-
tured by HDL-64 LiDAR sensor, each single depth map
contains less than 6% valid values and the ground truth
depth maps are generated by aggregating multiple consec-
utive frames, whose density is about 14%. Since there are
nearly no valid points at the top regions of depth images,
the input images are bottom center cropped to 1216× 240.

SUN RGBD Dataset. The SUN RGBD dataset [38] is
an indoor dataset containing RGB-D images constructed
based on several existing datasets [37, 19, 49]. We use it
only for cross-dataset evaluation. 555 frames captured by
Kinect V1 and 3389 captured by Asus Xtion camera are
used to evaluate our model, where we conduct the same pre-
processing as in the NYUv2 dataset.
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Method RMSE ↓ REL ↓ δ1 ↑ δ2 ↑ δ3 ↑
Bilateral [37] 0.479 0.084 92.4 97.6 98.9

S2D [30] 0.204 0.043 97.8 99.6 99.9

CSPN [5] 0.117 0.016 99.2 99.9 100.0

DeepLiDAR [32] 0.115 0.022 99.3 99.9 100.0

DepthNormal [51] 0.112 0.018 99.5 99.9 100.0

ACMNet [54] 0.105 0.015 99.4 99.9 100.0

GuideNet [41] 0.101 0.015 99.5 99.9 100.0

TWICE [18] 0.097 0.013 99.6 99.9 100.0

NLSPN [31] 0.092 0.012 99.6 99.9 100.0

RigNet [52] 0.090 0.013 99.6 99.9 100.0

GraphCSPN [27] 0.090 0.012 99.6 99.9 100.0

PRNet [23] 0.104 0.014 99.4 99.9 100.0

CostDCNet [21] 0.096 0.013 99.5 99.9 100.0

Point-Fusion [17] 0.090 0.014 99.6 99.9 100.0

PointDC (ours) 0.089 0.012 99.6 99.9 100.0

Table 1. Quantitative comparisons on the NYU Depth V2 dataset
[37]. The metrics RMSE and REL are presented in meters (m).
Algorithms of the upper block regard depth completion as a guided
image restoration task while the ones of the lower block exploit 3D
geometry information and fuse with 2D features.

Metrics. Following existing methods [31, 27, 52], we
use five metrics for NYUv2 dataset, including RMSE, REL,
and δi(i = 1.25, 1.252, 1.253). For the KITTI depth com-
pletion dataset, we use four metrics, including RMSE,
MAE, iRMSE and iMAE.

5.2. Implementation Details

PointDC is implemented with the Pytorch framework.
We adopt the AdamW optimizer [29] with β1 = 0.9, β2 =
0.99 and set the maximum learning rate to 5 × 10−4. For
the NYU-Depth-v2 dataset, we train the model for 150000
iterations, where the batch size is set to 16 and 500 depth
pixels are randomly sampled from the ground truth to gen-
erate the input sparse depth map. For the KITTI DC dataset,
the model is trained for 300,000 iterations with a batch size
of 8. We randomly sample 10, 000 points for training fol-
lowing [4]. The cosine annealing learning rate strategy is
adopted for the learning rate decay where the cosine warm-
up strategy is applied for the first 5% iterations.

5.3. Evaluation on NYU Depth v2 Dataset

We first evaluate PointDC on the official test split of
NYU-Depth-v2 dataset [37]. For quantitative comparison,
we list the results in Table 1. We divide various depth com-
pletion algorithms into two categories: one category regards
the guided depth completion as a guided image restoration
task, the other category learns both 2D and 3D information.
As shown in Table 1, PointDC achieves the best accuracy
measured by all evaluation metrics.

To conduct qualitative comparisons, we display three ex-
amples in Fig. 4. In the simple scenes of the first two rows,
PointDC generates more details than other methods, for ex-

Components RMSE (m)↓ REL (m) ↓ #param (M)↓
w/o feature point cloud aggregation 0.093 0.013 25.07

w/o 3D information Extraction 0.091 0.012 24.967

w/o channel attention 0.090 0.012 25.097

full model 0.089 0.012 25.098

Table 2. Ablation studies on the feature point cloud aggregation,
3D information extraction and channel attention modules.

K nearest neighbors 3 6 9 12 15 18

RMSE (m)↓ 0.089 0.090 0.089 0.090 0.090 0.089

Table 3. Ablation studies on the number of k-nearest neighbors in
the 3D information extraction module and the feature point cloud
aggregation module, which influence the model’s receptive field.

number of blocks 1 2 3 4

RMSE (mm)↓ 90.50 90.33 89.11 88.83

Table 4. Ablation studies on the number of local self-attention
transformer blocks in the 3D information extraction module.

ample, the kettle in the first row and the chair in the second
row. A more challenging example is shown in the third row
of Fig. 4. Although the details in color image are hard to
discriminate by human eyes, PointDC can still effectively
recover good results while the other methods fail to achieve
this. The above quantitative and qualitative comparisons
demonstrate the excellent performance of our model.

5.4. Ablation Study

To verify the effectiveness of the components in
PointDC, including feature point cloud aggregation, 3D in-
formation extraction and channel attention, we conduct ab-
lation studies on the NYU Depth v2 dataset [37]. Addition-
ally, we validate the influence of the number of k-nearest
neighbors in the feature point cloud aggregation module.

Components in PointDC. We respectively deactivate
each of the three components to validate their effectiveness
and list the test results in Table 2. Without feature point
cloud aggregation module, the extracted 3D information is
directly added to the image feauture map. In this case, the
propagation of 3D information is similar to [4, 17] which
mainly depends on the convolutions. We can observe that
the accuracy drops the most without the feature point cloud
aggregation module. Without the 3D information extrac-
tion module, the information during propagation is mainly
extracted at 2D space, which do not fully exploit 3D geom-
etry information. Without channel attention, some unneces-
sary channels are not suppressed and they will bring adverse
effects to the performance. The results demonstrate that the
accuracy of the full network decreases when any of the three
components is deactivated. We also evaluate the influence
of each component on the generalizability of the model un-
der different sparsity levels of the input depth maps. We
display the results in Fig. 5. We can observe that the RMSE
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(a) Color image (b) Sparse depth (c) CSPN (d) NLSPN (e) GraphCSPN (f) CostDCNet (g) PointDC (ours) (h) Ground Truth

Figure 4. Qualitative depth completion results on the NYU Depth V2 dataset. (a) Color image, (b) Sparse depth, (c) CSPN [5], (d)
NLSPN [31], (e) GraphCSPN [27], (f) CostDCNet [21], (e) PointDC (ours), (h) Ground truth. All the results are generated under the same
500 samples.

Figure 5. Generalization comparison of completion results ob-
tained by our PointDC in four cases: (1) without feature point
cloud aggregation, (2) without 3D information extraction, (3)
without channel attention, (4) full model.

value drops quickly with the decrease of the number of the
sampled points when removing the feature point cloud ag-
gregation and 3D information extraction modules. To sum
up, the above ablation studies demonstrate the effectiveness
of these components.

The number of k-nearest neighbors in feature point
cloud aggregation module. We conduct experiments to
validate the influence of k2 in the feature point cloud ag-
gregation module and list the results in Table 3. We can
observe that our model’s performance is stable in terms of
the RMSE, which demonstrates that our model is quite ro-
bust to this hyper-parameter. The reason is that the neigh-
boring feature points within local regions mostly contribute
to the results, as mentioned in Section 3. For simplicity,
we set this number to 9 for fair comparisons, which proves
that the improvements of accuracy are mainly contributed
by our long-range information propagation strategy.

The number of local self-attention transformer
blocks in the 3D information extraction module. To vali-
date how the number of the local self-attention transformer

Method RMSE ↓ MAE ↓ iRMSE↓ iMAE↓
CSPN [5] 1019.64 279.46 2.93 1.15

TWICE [18] 840.20 195.58 2.08 0.82
DepthNormal [51] 777.05 235.17 2.42 1.13

DeepLiDAR [32] 758.38 226.50 2.56 1.15

FuseNet [4] 752.88 221.19 2.34 1.14

ACMNet [54] 744.91 206.09 2.08 0.90

NLSPN [31] 741.68 199.59 1.99 0.84

GraphCSPN [27] 738.41 199.31 1.96 0.84

GuideNet [41] 736.24 218.83 2.25 0.99

PENet [16] 730.08 210.55 2.17 0.94

Guideformer [34] 721.48 207.76 2.14 0.97

RigNet [52] 712.66 203.25 2.08 0.90

FuseNet [4] 752.88 221.19 2.34 1.14

Point-Fusion [17] 741.9 201.10 1.97 0.85

PointDC (ours) 736.07 201.87 1.97 0.87

Table 5. Quantitative comparisons on the KITTI Depth Comple-
tion test dataset [43]. The metrics RMSE and REL are presented in
millimeter (mm), while iRMSE and iMAR are presented in 1/kilo-
meter (1/km). Following Tab 1. Algorithms on the upper block
mainly reason in the 2D image space while the lower ones exploit
3D geometry information.

blocks influence the final accuracy, we change the number
of N and list the results in Table 4. As shown in the ta-
ble, with the increasing of N , the RMSE of our PointDC
decreases. And it tends to saturate when N is larger than 2.
The results prove that exploiting 3D geometry information
within a number of neighboring points plays an important
role. In this work, we set N to 4.

5.5. Evaluation on KITTI DC Dataset

To demonstrate the versatility of our model, we evalu-
ate PointDC with the KITTI Depth Completion dataset [43]
and list the qualitative results Table 5. Our model ranks
4th in terms of RMSE, but we excel all the methods which
exploit 3D information in this metric. In the upper block,
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(a) Color Image (b) GuideNet (C) NLSPN (d) PENet (e) ACMNet (f) PointDC (ours)

Figure 6. Qualitative depth completion results on the KITTI DC Dataset [43]. (a) Color image, (b) GuideNet [41], (d) NLSPN [31],
(d) PENet [16], (e) ACMNet [54], (f) PointDC (ours).

(a) RMSE on different number of sampling points (b) REL on different number of sampling points.

Figure 7. Comparison with existing methods under different number of sampled points on NYU depth v2 [37], including CSPN [5],
NLSPN [31], GraphCSPN [27] and CostDCNet [21].

Guideformer [34] is the first method which introduces trans-
former [44] for depth completion. Compare to Guide-
former [34], our method achieves better performance in
terms of MAE, iRMSE, and iMAE metrics.

We display three examples in Fig. 6 for qualitative com-
parisons. In the first and second row, PointDC recovers
clearer details such as the bicycle and the bars. The ex-
ample in the third row is more challenging, but PointDC
still achieves better results, especially around the car win-
dow. Both qualitative and quantitative analyses demonstrate
that PointDC attains competitive results compared to other
state-of-the-arts.

5.6. Generalization Capability

To validate the generalizability of PointDC, we carry out
extensive experiments: (1) different sparsity levels of the
input depth map. (2) cross-dataset evaluation.

Different sparsity levels. In practice, the number of
sparse points is different for various scenarios. To com-

Method RMSE ↓ REL ↓ δ1 ↓ δ2 ↓ δ3 ↓
CSPN [5] 0.729 0.504 69.1 77.8 84.0

NLSPN [31] 0.093 0.020 98.9 99.6 99.7

CostDCNet [21] 0.119 0.033 98.1 99.3 99.6

GraphCSPN [27] 0.094 0.023 98.8 99.6 99.7

PointDC 0.092 0.023 98.9 99.6 99.8

Table 6. Cross-dataset evaluation performance on the SUN RGBD
Dataset collected by Kinect V1. The metrics RMSE and REL are
presented in meter (m)

pare the performance under different sparsity levels of the
input depth map, we train PointDC on a certain setting and
then evaluate on other sparsity levels. For the indoor NYU
depth v2 dataset [37], we change the number of sampled
points from 100 to 1000 with a step size of 100. We com-
pare our PointDC with CSPN [5], NLSPN [31], GraphC-
SPN [27], and CostDCNet [21]. The results are displayed
in Fig. 7. In terms of RMSE and REL metrics, it is ob-
served that PointDC exceeds other methods on all the spar-
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(a) RMSE under different sampling ratios. (b) MAE under different sampling ratios.

Figure 8. Comparison with existing methods under different sample ratios on the valiation set of KITTI Depth Completion [37], including
CSPN [5], NLSPN [31], GraphCSPN [27] and CostDCNet [21].

Method RMSE ↓ REL ↓ δ1 ↓ δ2 ↓ δ3 ↓
CSPN [5] 0.490 0.179 84.5 91.5 95.1

NLSPN [31] 0.128 0.015 99.0 99.7 99.9
CostDCNet [21] 0.207 0.028 97.8 99.1 99.5

GraphCSPN [27] 0.131 0.017 99.0 99.7 99.9
PointDC 0.128 0.016 99.1 99.7 99.9

Table 7. Cross-dataset evaluation performance on the SUN RGBD
Dataset collected by Xtion. The metrics RMSE and REL are pre-
sented in meter (m)

sity levels. This demonstrates the generalizability of our
PointDC in indoor scenes. For the KITTI Depth Comple-
tion Dataset [43], we uniformly sub-sample the raw LiDAR
depth by different ratios from 1 to 0.1 with a step size of 0.1
and display the results in Fig 8. The minimum value of the
x axis is 0.05. The comparison mathods include S2D [30],
GuideNet [41], NLSPN [31], ACMNet [54], PENet [16],
and TWISE [18]. In Fig. 8, at the beginning, PointDC is
inferior to PENet [16], however, our model achieves bet-
ter results when the sample ratio decreases, especially at
0.1 and 0.05. Although the accuracy of PointDC is a little
inferior to CMNet [54] when sample ratio is 0.2 and 0.3,
the overall performance of PointDC is better than all the
methods. These results demonstrate PointDC is robust to
different sparsity levels of the input depth maps.

Cross-dataset Evaluation. To validate cross-dataset
performance, we train PointDC on the NYUv2 dataset and
then test on the SUN RGBD dataset [38] directly. The
evaluation results on the dataset captured by Kinect V1
are listed in Table 6 and the dataset captured by Xtion are
listed in Table 7.Compared to Table 1, the accuracy of all
the methods drops due to different camera and depth sen-
sors. As the datas captured by Xtion come from a dif-
ferent device, the accuracy decreases more. However, we
can observe from the results that our model still achieves
the best performance in terms of RMSE. For REL, our
model achieves competitive results with NLSPN [31] and

Method Parameters (M)↓ FLOPs (G) ↓
PointDC 25.098 108.89

NLSPN [31] 26.4 542.2

Table 8. Computational analysis, which is measured with inputs of
resolution 228× 304.

outperforms all the other methods. These above analyses
demonstrate the strong cross-dataset generalizability of our
PointDC.

5.7. Computational Cost

We list the parameters and FLOPs of PointDC in Table 8,
with these of NLSPN for comparison. Although the param-
eters of PointDC are similar to NLSPN, PointDC requires
much less FLOPs (G). The reason is that NLSPN finishes
the information propagation by numerous iterations while
out PointDC can achieve it directly.

6. Conclusion
We propose a feature point cloud aggregation framework

that extracts both 2D and sparse 3D features for depth com-
pletion. It reconstructs the depth information for a target
location by the adjacent sparse 3D feature points, in which
each location can capture 3D information from the sparse
3D features directly regardless of the sparsity levels of the
input depth maps. Based on this, we build a neural net-
work called as PointDC. We experimentally show that our
PointDC achieves better or comparable results compared to
state-of-the-art depth completion methods. In addition, our
PointDC demonstrates strong generalization performance
with respect to the different sparsity levels of the input depth
and cross-data evaluation.
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[33] René Ranftl, Alexey Bochkovskiy, and Vladlen Koltun. Vi-
sion transformers for dense prediction. In Proceedings of
the IEEE/CVF International Conference on Computer Vi-
sion, pages 12179–12188, 2021. 3

[34] Kyeongha Rho, Jinsung Ha, and Youngjung Kim. Guide-
former: Transformers for image guided depth completion.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 6250–6259, 2022. 3,
7, 8

[35] Barbara Roessle, Jonathan T Barron, Ben Mildenhall,
Pratul P Srinivasan, and Matthias Nießner. Dense depth pri-
ors for neural radiance fields from sparse input views. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 12892–12901, 2022. 1

[36] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net:
Convolutional networks for biomedical image segmentation.
In Medical Image Computing and Computer-Assisted Inter-
vention, pages 234–241, 2015. 2, 3, 5

[37] Nathan Silberman, Derek Hoiem, Pushmeet Kohli, and Rob
Fergus. Indoor segmentation and support inference from

rgbd images. Proceedings of the European Conference on
Computer Vision, 7576:746–760, 2012. 5, 6, 8, 9

[38] Shuran Song, Samuel P Lichtenberg, and Jianxiong Xiao.
Sun rgb-d: A rgb-d scene understanding benchmark suite.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 567–576, 2015. 5, 9

[39] Zhenbo Song, Jianfeng Lu, Yazhou Yao, and Jian Zhang.
Self-supervised depth completion from direct visual-lidar
odometry in autonomous driving. IEEE Transactions on In-
telligent Transportation Systems, 23(8):11654–11665, 2021.
1

[40] Robin Strudel, Ricardo Garcia, Ivan Laptev, and Cordelia
Schmid. Segmenter: Transformer for semantic segmenta-
tion. In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, pages 7262–7272. IEEE, 2021.
3

[41] Jie Tang, Fei-Peng Tian, Wei Feng, Jian Li, and Ping Tan.
Learning guided convolutional network for depth comple-
tion. IEEE Transactions on Image Processing, 30:1116–
1129, 2020. 2, 3, 6, 7, 8, 9

[42] Jonas Uhrig, Nick Schneider, Lukas Schneider, Uwe Franke,
Thomas Brox, and Andreas Geiger. Sparsity invariant cnns.
In International Conference on 3D Vision, pages 11–20,
2017. 1, 2

[43] Jonas Uhrig, Nick Schneider, Lukas Schneider, Uwe Franke,
Thomas Brox, and Andreas Geiger. Sparsity invariant cnns.
In International Conference on 3D Vision, 2017. 5, 7, 8, 9

[44] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In Advances in Neural
Information Processing Systems, 2017. 8

[45] Haowen Wang, Mingyuan Wang, Zhengping Che, Zhiyuan
Xu, Xiuquan Qiao, Mengshi Qi, Feifei Feng, and Jian Tang.
Rgb-depth fusion gan for indoor depth completion. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 6209–6218, 2022. 5

[46] Shenlong Wang, Simon Suo, Wei-Chiu Ma, Andrei
Pokrovsky, and Raquel Urtasun. Deep parametric continu-
ous convolutional neural networks. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 2589–2597, 2018. 2, 3

[47] Yan Wang, Wei-Lun Chao, Divyansh Garg, Bharath Hari-
haran, Mark Campbell, and Kilian Q Weinberger. Pseudo-
lidar from visual depth estimation: Bridging the gap in 3d
object detection for autonomous driving. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 8445–8453, 2019. 1

[48] Xiaopei Wu, Liang Peng, Honghui Yang, Liang Xie, Chenxi
Huang, Chengqi Deng, Haifeng Liu, and Deng Cai. Sparse
fuse dense: Towards high quality 3d detection with depth
completion. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 5418–
5427, 2022. 1

[49] Jianxiong Xiao, Andrew Owens, and Antonio Torralba.
Sun3d: A database of big spaces reconstructed using sfm
and object labels. In Proceedings of the IEEE International
Conference on Computer Vision, pages 1625–1632, 2013. 5

8742



[50] Haofei Xu, Jing Zhang, Jianfei Cai, Hamid Rezatofighi, and
Dacheng Tao. Gmflow: Learning optical flow via global
matching. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 8121–
8130. IEEE, 2022. 3

[51] Yan Xu, Xinge Zhu, Jianping Shi, Guofeng Zhang, Hujun
Bao, and Hongsheng Li. Depth completion from sparse li-
dar data with depth-normal constraints. In Proceedings of
the IEEE/CVF International Conference on Computer Vi-
sion, pages 2811–2820, 2019. 3, 6, 7

[52] Zhiqiang Yan, Kun Wang, Xiang Li, Zhenyu Zhang, Jun Li,
and Jian Yang. Rignet: Repetitive image guided network for
depth completion. In Proceedings of the European Confer-
ence on Computer Vision, pages 214–230, 2022. 2, 3, 5, 6,
7

[53] Xuancheng Zhang, Yutong Feng, Siqi Li, Changqing Zou,
Hai Wan, Xibin Zhao, Yandong Guo, and Yue Gao. View-
guided point cloud completion. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 15890–15899, 2021. 3

[54] Shanshan Zhao, Mingming Gong, Huan Fu, and Dacheng
Tao. Adaptive context-aware multi-modal network for
depth completion. IEEE Transactions on Image Processing,
30:5264–5276, 2021. 2, 3, 6, 7, 8, 9

[55] Lingting Zhu, Xian Liu, Xuanyu Liu, Rui Qian, Ziwei
Liu, and Lequan Yu. Taming diffusion models for audio-
driven co-speech gesture generation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 10544–10553, June 2023. 1

8743


