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Abstract: In the colorimetric or spectral characterization
of imaging devices such as digital cameras and scanners,
the optoelectronic conversion functions (OECFs) are tra-
ditionally obtained from standard gray samples. However,
these gray samples are sometimes unavailable when con-
ducting color characterization. We propose an efficient
method for recovering OECFs by using nongray samples,
based on the finite-dimensional modeling of spectral re-
flectance and the second-order polynomial fitting of
OECFs. Experimental results indicate that the accuracy
of the estimated OECFs are close to those obtained from
gray samples, with the correlation coefficients R2 larger
than 0.995. The proposed method should be useful in col-
orimetric and spectral characterization of imaging devices
by using custom-made color samples in textile or other
industries, when standard gray samples are not available
and not easily made. � 2008 Wiley Periodicals, Inc. Col Res

Appl, 33, 135 – 141, 2008; Published online in Wiley InterScience

(www.interscience.wiley.com). DOI 10.1002/col.20386
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INTRODUCTION

Nowadays, digital imaging devices such as scanner and

digital camera are widely used in visualization, communi-

cation, and reproduction. To obtain the faithful color in-

formation in these processes, the imaging devices need

to be color characterized. Colorimetric characterization

transforms the device responses (usually red, green, and

blue) into colorimetric tristimulus values,1–5 while spec-

tral characterization converts them into spectral reflec-

tance.5–7 Some recent works show that the accuracy of

color characterization can be improved by appropriate

selection of training samples.4–6 When compared with

spectral characterization, the main disadvantage of colori-

metric characterization is that it can only obtain tristimu-

lus values under a certain illuminant. Recently, Cheung

et al. found that colorimetric characterization outper-

formed spectral characterization in terms of color differ-

ence error.7

As the responses of the imaging device are generally

nonlinear to scene radiance, the optoelectronic conversion

functions (OECFs)8 should be obtained or recovered

before color characterization. It is noted that the OECFs

are more important for spectral characterization than for

colorimetric characterization, as the former always works

in linear reflectance space,5–7 while the latter can incorpo-

rate this nonlinear property inside.1,4 In the literature of

color science, there are some techniques to obtain the

OECFs. For example, the ISO 14524 standard8 introduces

a method by using a gray scale test pattern, and it has

been employed in the ISO 17321 standard2 for the color

characterization of digital cameras. Martinez-Verdu et al.
obtained the OECFs using a simulated spectrally neutral

gray scale test pattern illuminated by an equal-energy illu-

minant, which is equivalent to changing lens aperture or

exposure time.3 Recently, Cheung et al. proposed a spec-

tral-sensitivity-based technique to estimate the OECFs,

and found it performed better than the luminance- and

mean-reflectance-based techniques.9 It is worthwhile
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to noted that, in the literature of computer vision, some

techniques have been introduced to estimate the radiomet-

ric response functions (a similar term for OECFs) of cam-

era from multiple images or even a single image.10–12 In

those techniques, the scene reflectance values are assumed

unknown, which is different to color characterization dis-

cussed in this study.

In color characterization, standard color targets such as

GretagMacBeth ColorChecker hart (MCC) and Gretag-

MacBeth ColorChecker DC (CDC) are always employed.

There are six gray patches on MCC and 13 unduplicated

gray patches on CDC, whose spectral reflectance curves

are very flat in the visible spectrum range. With these

gray samples or other carefully designed neutral gray

scale patterns, the OECF can be easily obtained. How-

ever, these standard gray samples may sometimes not be

available when conducting color characterization. For

example, in some industrial applications, imaging devices

need to be characterized using custom-made color targets,

but it is often quite difficult and also time-consuming to

make such gray samples with dyestuffs or inks. In these

applications, it is also not feasible to produce a series of

different neutral illumination levels.

This study proposes a method to recover OECFs accu-

rately by using only nongray samples, based on which

color characterization of imaging device can be conducted

when standard gray samples are not available. The recov-

ery of the OECFs is mainly based on two techniques:

finite-dimensional modeling of spectral reflectance13,14

and high-order polynomial fitting of the OECFs.3,12,15 In

this study, the OECF estimation is based on color scan-

ner, but it is also applicable to digital cameras. In the

scope of OECF estimation and color characterization, the

only difference between scanner and digital camera is that

the former works under a fixed illuminant, while the later

can work under a wide range of illuminants.

THE PROPOSED METHOD

Formulation of Imaging Process

Theoretically, for an ideal three-channel imaging de-

vice, i.e., color scanner, the 3 3 1 response vector u of

an object surface can be formulated as

u ¼Mrþ n; (1)

where the 3 � N (N ¼ 31) matrix M denotes spectral

responsivity of the scanner, the N � 1 vector r denotes

spectral reflectance, and the 3 � 1 vector n denotes zero-

mean imaging noise. The response u of a certain channel

(for example, red) can be calculated as

u ¼ mTr; (2)

where the superscript T denotes transpose, and the 1 � N
vector mT represents a row vector of matrix M. For sim-

plicity in denotation and without loss of generality, the

channel number is not explicitly expressed in Eq. (2) and

the following discussion when no confusion is caused. It

is also noted that the noise term is omitted in Eq. (2) and

hereafter, as it only indicates the noise in the imaging

process but is not involved in the following calculations

unless otherwise especially mentioned.

Equations (1) and (2) assume that the responses of

scanner are proportional to the intensity of light entering

the sensor. However, for a traditional scanner, its actual

response q of a channel may be subject to an input–out-

put nonlinearity that can be represented by an OECF F(�)
as the following6:

q ¼ F uð Þ ¼ F mTr
� �

: (3)

In the following discussion, q is referred as actual

response and u is referred as linear response. It is noted

that the OECFs of three channels are always different to

each other. As q is actually known, the OECF is usually

represented in its inverse counterpart F21(�)

u ¼ F�1 qð Þ ¼
XN
i¼1

miri; (4)

where mi and ri are the ith element of vector m and r,

respectively.

For gray sample, its reflectance along the visible spec-

trum range is a constant, i.e., ri ¼ r0. Hence, Eq. (4) can
be written as

u ¼ F�1 qð Þ ¼ r0
XN
i¼1

mi: (5)

As m is fixed for an imaging system, the OECF can be

simply obtained using a series of r0 and q of gray sam-

ples. For nongray samples, however, this simple relation-

ship does not hold. Therefore, it is necessary to propose a

new OECF estimation method so that color characteriza-

tion can be consequently conducted when gray samples

are not available.

Recovery of Inverse OECF Using Nongray Samples

The inverse OECF is usually a monotonically increas-

ing function, and can be represented using polynomial fit-

ting15:

u ¼ F�1 qð Þ ¼
XK
k¼0

ckq
k: (6)

where K is the order of polynomial terms.

In addition, as the reflectance of natural object is

smooth in the visible spectrum range, r can be approxi-

mately represented using J (�N) basis functions13:

r ¼
XJ
j¼1

ajbj; (7)

where bj denotes the jth basis function, and aj denotes its

corresponding weighting. bj can be calculated from the

spectral reflectance space using principle component

analysis.13,14
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Substituting Eqs. (6) and (7) into (2) yields

u ¼
XJ
j¼1

aj m
Tbj

� � ¼XK
k¼0

ckq
k ¼ c0 þ

XK
k¼1

ckq
k: (8)

It is noted that, as q is in the range of 0 and 255, c0 is

usually the largest one among ck (k ¼ 0 : : :K). By dividing

each side with c0, followed by necessary arrangement, we get

XK
k¼1

ck
c0

� �
qk �

XJ
j¼1

mTbj

c0

� �
aj ¼ �1: (9)

Using vector-matrix notation, Eq. (9) becomes

qTc� aTd ¼ �1; (10)

where

q ¼ q; : : : ; qK
� �T

; (11)

c ¼ c1
c0

; : : : ;
cK
c0

� �T
; (12)

a ¼ a1;a2; : : : ; aJ½ �T; (13)

d ¼ mTb1

c0
;
mTb2

c0
; : : : ;

mTbJ

c0

� �T
(14)

Equation (10) can also be written as

qTacd ¼ �1 (15)

where

qa ¼ qT; aT
� �T

; (16)

cd ¼ cT;�dT� �T
: (17)

qa and cd are both (K þ J) � 1 vectors. If Q (Q ‡ K þ J)
training color samples are employed, Eq. (15) can be rep-

resented in its matrix form:

Kacd ¼ �I (18)

where Ka is the Q � (K þ J) matrix of vector qTa , and
I ¼ [1,1, : : : ,1]T. Then the coefficient cd can be solved:

cd ¼ �Kþa I: (19)

where the superscript þ denotes pseudo-inverse.

In this manner, cd, or equivalently, c and d, are

obtained by minimizing the root-mean-square (rms) errors

of Q training samples, but the obtained polynomial coeffi-

cient c is usually not optimal under the OECF fitting

meaning as we desired. To refine the estimate of c, we

first assume d is free of error, and calculate the linear

response û using the estimated d,

û ¼ aTd; (20)

From Eqs. (8) and (20), it is noticed that û is actually

the estimate of u/c0, not u. However, it should be noted

that the scaling factor c0 will not affect the accuracy of

color characterization. Actually, its effect will be can-

celled through the normalization of linear responseu when

constructing the inverse OECF. û can be represented by

polynomial fitting:

û ¼ 1; q; : : : ; qK
� � ĉ0

ĉ1

..

.

ĉK

2
6664

3
7775 ¼ ~qTĉ: (21)

Then ĉ can be reestimated as

ĉ ¼ ~qT
� �þ

û½ �; (22)

where ~qT
� �

; is the Q � (K þ 1) matrix of vector ~qT, and
[û] is the Q � 1 vector of û. The investigation indicates that

the ĉ estimated from Eq. (22) is actually more accurate than

the c (component vector of cd) estimated from Eq. (19), in

terms of correlation coefficient R2 with gray samples.

In addition, the estimation of ĉ can be further refined using

the following procedure:

– Initialize ĉ according to Eq. (22)

– Iterate the followings for L times

� ½û�  ~qT
� �̂

c /* û from polynomial fitting, Eq. (21) */

� d aT½ �þ û½ � /* calculate eigen-terms according to

Eq. (20) */

� û½ �  aT½ �þd /* û from finite-dimensional model

ing, Eq. (20) */

� ĉ ~qT½ �þ û½ � /* coefficients from polynomial fitting,

Eq. (22) */

– End Iteration

After the recovery of ĉ, the OECFs can then be repre-

sented by polynomial fitting. The accuracy of the estimated

OECFs can be evaluated by their correlation coefficients

with gray samples. Further more, its performance of the

proposed method can also be evaluated by the color errors

of colorimetric and spectral characterization. It should be

noted that the absolute accuracy of color characterization is

not our concerns in this study, and hence we can just use

simple color characterization techniques.

Colorimetric characterization using the OECFs

The colorimetric characterization is conducted based on

the widely adopted high-order polynomial regression.1,4

Note not to confuse the term ‘‘polynomial regression’’ in

colorimetric characterization with the term ‘‘polynomial

fitting’’ in OECF estimation. Hong et al. found that 11

polynomial terms could produce satisfactory results in

digital camera characterization,1 while Cheung and West-

land used 20 terms instead.4 As there are only 18 nongray

samples on MCC, we consider second-order polynomial

terms should be appropriate in this study, and thus we

obtain a 10 3 1 second-order response vector a:

a ¼ û1; û2; û3; û
2
1; û

2
2; û

2
3; û1û2; û1û3; û2û3; 1

� �T
(23)

where ûi represents the linear response of the ith channel

obtained fromOECF. If let the 3� 1 vector of the tristimulus

values be x, then the purpose of colorimetric is to find a

3� 10 transform matrixH between x and a such that

x ¼ Ha (24)

If Q color samples are employed, H can be calculated as
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H ¼ x½ � a½ �þ (25)

where [x] is 3 � Q matrix of vector x, and [a] is the

10 � Q matrix of vector a. The accuracy of colorimetric

characterization based on the estimated OECFs can be

evaluated by the recently developed CIEDE2000 color

difference16 DE00 error under an illuminant such as D65.

Spectral Characterization Using the OECFs

The purpose of spectral characterization is to estimate a

N 3 3 transform matrix W such that

r ¼Wû; (26)

where û ¼ [û1, û2, û3]
T. W can be calculated using

pseudo-inverse as

W ¼ r½ � û½ �þ; (27)

where [û] is the 3 � Q matrix of vector û, and [r] is the

N�Q matrix of r. It is noted that there are other spectral

characterization technique available in the literature.5,6 As

the spectral characterization is only used to evaluate the

accuracy of the estimated OECFs in this study, we simply

choose the pseudo-inverse based one.

In addition to DE00 error, we can further use the spec-

tral rms error

rms ¼ r� r̂ð ÞT r� r̂ð Þ
N

 !1=2

(28)

to evaluate the accuracy of the spectral characterization.

EXPERIMENTAL RESULTS AND DISCUSSION

In the experiment, the color targets MCC and CDC were

employed. The spectral reflectance data and the tristimu-

lus values of the color patches on MCC and CDC were

measured by using a GretagMacBeth spectrophotometer

model 7000A. For CDC, 172 color patches were used,

excluding the duplicated darkest ones, the duplicated

lightest ones, and the glossy ones. These 172 color sam-

ples were divided into one set containing 157 nongray

colors, and one set that containing 13 gray colors. Simi-

larly, the color patches on MCC were also divided into

two sets, with one set containing 18 nongray colors and

the other set containing 6 gray colors. The two sets con-

taining nongray samples were used for the OECF estima-

tion in the proposed method, as well as colorimetric and

spectral characterization. The accuracy of the proposed

method was evaluated by the correlation coefficients R2

between the estimated OECFs and those obtained from

gray samples. The color different error and spectral rms

error of color characterizations are also used in the accu-

racy evaluation. It should be noted that the sets of non-

gray samples were not further divided into training and

testing subsets as usual color characterization, since the

purpose of this experiment is to evaluate whether the ac-

curacy of the estimated OECF is adequate for color char-

acterizations, but not the color characterization methods

themselves.

The investigation found that second-order polynomial

fitting to OECFs was adequate for the scanner used in this

study. But it should be noted that for other imaging devi-

ces more higher-order polynomial fitting may be neces-

sary.12 In the experiment, it is also interesting to investi-

gate whether the two parameters, i.e., the number J of ba-

sis functions and the iteration time L, have obvious

influences on the accuracy of OECF estimation. The ex-

perimental evaluation was conducted on simulated data

and real data, respectively.

OECF Evaluation Using Simulated Scanner Responses

The simulated nonlinear response of a channel (for

example, red) is calculated based on the spectral respon-

sivity m of the scanner and the spectral reflectance r of

the color sample, followed by an OECF with exponential

form and added Gaussian noise n:

q ¼ F uð Þ þ n ¼ lu1=g þ n ¼ l mTr
� �1=g þ n (29)

In this study, we let c ¼ 1.8 and l ¼ 22, and q is kept

in the range [0, 255]. It should be noted that, different to

Eq. (1), the noise term n in Eq. (29) is in the nonlinear

response space. The spectral responsivities of all three

channels are shown in Fig. 1, which is similar to the ones

recovered froma real scanner.6 To evaluate the influence

of noise n on the OECF recovery method, we used four

simulated datasets of nonlinear responses q: without

noise, Gaussian noise with standard deviation r ¼ 1.0,

2.0, and 3.0, respectively.

The distribution of average DE00 errors with respect to

different basis function numbers J and different noise lev-

els for the colorimetric and spectral characterizations are

shown in Figs. 2 and 3, respectively. The calculations are

FIG. 1. The spectral responsivity of the scanner for simu-
lating nonlinear responses. [Color figure can be viewed in
the online issue, which is available at www.interscience.
wiley.com.]
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based on CDC, and the iteration number L ¼ 1. It is

expected that, with the increasing of noise level, the color

difference error becomes larger for both colorimetric and

spectral characterizations. It is found from Fig. 2 that the

color accuracy of colorimetric characterization keeps sta-

ble with respect to J when noise level r ¼ 0.0, 1.0, and

2.0. However, color difference errors become obviously

larger when r ¼ 3.0 and J [ 10. It is also found from

Fig. 3 that the color difference errors of spectral charac-

terization for small J values (J � 4) and large J values

(J ‡ 9) are usually larger than those of medium J values

(5 � J � 8). This indicates that a small number of basis

functions are usually not adequate to represent the spec-

tral reflectance space, while the OECF estimation may be

affected by noise when a large number of basis functions

are used. This is not surprising as the high-order basis

functions always contain high-frequency variations of re-

flectance, and thus the OECF estimation can be more eas-

ily affected by noise. In comparison, a small number of

basis functions do not obviously degrade the accuracy of

colorimetric characterization. The reason may be that the

inaccuracy caused by insufficient basis functions can be

compensated by the interaction terms and second-order

terms in colorimetric characterization. In addition, the fur-

ther color characterization on MCC found that DE00 dis-

tributions were rather fluctuant when noise level becomes

heavier. The reason may be that as MCC contains only

18 nongray samples, the OECF estimation is more easily

affected by noise.

OECF Evaluation Using Real Data

In experiment using real data, color targets MCC and

CDC were scanned by using an EPSON scanner model

GT-10000þ at a resolution of 72 dots per inch. In the

scanning process, all color adjustment functions of the

scanner are disabled, except tone correction. In this

experiment, the spectral responsivity M is not needed.

Figure 3 shows the variation of color difference errors

with respect to the number of basis functions J when

L ¼ 2. It was found that the influence of parameter J was

very obvious to the color accuracy of MCC especially

when J ¼ 7, but was not so evident to CDC. The reason

may be that CDC contains more color samples than

MCC, and thus the OECF estimation is accordingly more

robust. It is also found that the color accuracy of colori-

metric characterization is higher than spectral characteri-

FIG. 2. Average DE00 errors of colorimetric characteriza-
tion with respect to different numbers of basis functions J.
The nonlinear responses q are simulated by using the scan-
ner spectral responsivity and CDC spectral reflectance,
added by different levels of Gaussian noises. Iteration num-
ber L ¼ 1. [Color figure can be viewed in the online issue,
which is available at www.interscience.wiley.com.]

FIG. 3. Average DE00 errors of spectral characterization
with respect to different numbers of basis functions J. The
nonlinear responses q are simulated by using the scanner
spectral responsivity and CDC spectral reflectance, added
by different levels of Gaussian noises. Iteration number
L ¼ 1. [Color figure can be viewed in the online issue,
which is available at www.interscience.wiley.com.]

FIG. 4. Average DE00 errors of colorimetric and spectral
characterizations with respect to different numbers of ba-
sis functions J. The actual responses q of MCC and CDC
are used in calculation. Iteration number L ¼ 2. [Color fig-
ure can be viewed in the online issue, which is available at
www.interscience.wiley.com.]
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zation under the same conditions. This finding is in

consistent to that by Cheung et al.5 From Fig. 4, J ¼ 8 is

considered to be appropriate in both colorimetric and

spectral characterization, for either MCC or CDC. Tables

I and II show the influences of parameter L on OECF

estimations and consequently on colorimetric and spectral

characterizations, respectively. The correlation coefficients

R2 were calculated between the OECFs estimated from

nongray samples and those obtained from gray samples.

In Tables I and II, color characterization and OECF esti-

mation are both conducted on nongray samples in the

proposed method. While in the gray-based method, the

OECFs are obtained from gray samples, but color charac-

terization is also conducted on nongray samples.

Tables I and II show that increasing L will generallypro-

duce accurate OECF estimation. The only exception is in

the colorimetric characterization on MCC, where the aver-

age color error increases from 2.03 to 2.16 when L
increases from 0 to 3. Nevertheless, the color accuracy of

the proposed method is still very close to that of the gray-

based method. As a whole, it isconsidered that L ¼ 2 is

adequate and suitable for nongray sample based OECF esti-

mation. For this reason, L ¼ 2 is also used in Fig. 4. The

correlation coefficients in all cases are larger than 0.995.

Figure 5 plots the estimated three CDC OECFs using non-

gray samples and the actual ones from gray samples. It is

obvious that these two kinds of OECFs are very close. On

comparing with the results of previous works,9 the pro-

posed OECF estimation method is considered to be

adequate and useful for colorimetric and spectral character-

izations, especially when gray samples are not available.

CONCLUSION

A method for OECF estimation that does not require gray

samples is proposed based on the finite-dimensional mod-

eling of spectral reflectance and the second-order polyno-

mial fitting of OECFs. The experimental results indicate

that, to obtain accurate estimation of the OECFs, the

number of basis functions need to be appropriately

selected when there are not many training samples (such

as the case of MCC). On the other hand, the influence of

iteration number is not obvious. The correlation coeffi-

cients R2 between the OECFs estimated from nongray

samples and those directly obtained from gray samples

are larger than 0.995. The performance of the OECF esti-

mation method is further verified by the color accuracy of

colorimetric and spectral characterizations.

TABLE I. Evaluation of the OECF estimation method
in terms of correlation coefficient and by colorimetric
characterization.

Correlation coefficient R2

Colorimetric
characterization

DE00 error

Red Green Blue Mean Std. Max.

MCC
Gray-based – – – 2.13 1.75 5.96
Proposed
L ¼ 0 0.9988 0.9981 0.9666 2.03 1.68 6.12
L ¼ 1 0.9980 0.9990 0.9954 2.11 1.71 5.95
L ¼ 2 0.9973 0.9990 0.9995 2.14 1.73 5.85
L ¼ 3 0.9969 0.9988 0.9998 2.16 1.76 5.81

CDC
Gray-based – – – 2.38 1.82 10.36
Proposed
L ¼ 0 0.9999 0.9998 0.9995 2.38 1.83 10.34
L ¼ 1 0.9999 0.9998 0.9998 2.39 1.83 10.13
L ¼ 2 0.9998 0.9997 0.9998 2.39 1.82 10.11
L ¼ 3 0.9998 0.9997 0.9997 2.39 1.82 10.11

The correlation coefficients R2 are calculated between the OECFs
estimated from nongray samples and those obtained from gray sam-
ples. In the proposed method, the colorimetric characterization and
OECF estimation are conducted on nongray samples. In the gray-
based method, the OECFs are obtained from gray samples, while
colorimetric characterization is conducted on nongray samples.

TABLE II. Evaluation of the OECF estimation method in terms of correlation coefficient and by spectral
characterization.

Correlation coefficient R2

Spectral characterization

DE00 error Spectral rms error

Red Green Blue Mean Std. Max. Mean Std. Max.

MCC
Gray-based – – – 3.58 2.76 12.11 0.040 0.017 0.074
Proposed
L ¼ 0 0.9988 0.9981 0.9666 4.15 2.64 12.31 0.040 0.017 0.076
L ¼ 1 0.9980 0.9990 0.9954 3.65 2.48 11.18 0.040 0.018 0.077
L ¼ 2 0.9973 0.9990 0.9995 3.43 2.47 10.73 0.040 0.019 0.078
L ¼ 3 0.9969 0.9988 0.9998 3.35 2.46 10.60 0.040 0.019 0.078

CDC
Gray-based – – – 3.05 1.81 12.09 0.033 0.021 0.147
Proposed
L ¼ 0 0.9999 0.9998 0.9995 3.13 1.88 12.58 0.033 0.022 0.150
L ¼ 1 0.9999 0.9998 0.9998 3.05 1.78 12.49 0.033 0.022 0.150
L ¼ 2 0.9998 0.9997 0.9998 3.03 1.77 12.39 0.033 0.022 0.150
L ¼ 3 0.9998 0.9997 0.9997 3.02 1.76 12.32 0.033 0.022 0.150

The correlation coefficients R2 are calculated between the OECFs estimated from nongray samples and those obtained from gray sam-
ples. In the proposed method, the spectral characterization and OECF estimation are conducted on nongray samples. In the gray-based
method, the OECFs are obtained from gray samples, while spectral characterization is conducted on nongray samples.
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The proposed method is very necessary in color imag-

ing and industrial colorquality evaluation when standard

gray scale samples are not available. For example, in the

textile industry, color scanner is sometimes employed to

acquire images with high color fidelity. This can be

ensured through color characterization by using some

color textile fabrics. However, it is always difficult to col-

lect or dye aseries of fabrics with flat spectral reflectance.

The proposed method provides a promising solution for

accurate colorimetric and spectral characterization of

color scanner in this case.

It should benoted that a linear imaging model between

the OECF-based linear response and spectral reflectance

is assumed in this study. However, some scanners and

digital cameras may employ nonlinear color adjustments

in additional to tone correction. If applicable, these color

adjustment functions should be disabled before estimating

the OECFs from nongray samples. Otherwise, standard

gray samples must be used to obtain the OECFs instead.
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FIG. 5. The OECFs from gray samples and the OECFs
estimated using nongray samples in red, green, and blue
channels when iteration number L ¼ 2 and basis function
number J ¼ 8. The circles represent the normalized aver-
age reflectance of gray samples, and the asterisks repre-
sent the normalized linear response û predicted from esti-
mated OECFs. The color target is CDC. [Color figure can
be viewed in the online issue, which is available at www.
interscience.wiley.com.]
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