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ABSTRACT Tobacco leaf grading plays a crucial role in ensuring the quality of tobacco production. For a
very long period, the grading process is manually determined by experienced experts. In recent years, some
methods have been introduced to automate the grading process by utilizing the reflection images of tobacco
leaves. However, the high visual similarity among reflection images at different grades renders a single
reflection image insufficient for achieving accurate grading. Besides, the tobacco leaves with an identical
grade may have inconsistent visual appearances due to their different planting locations. It is known that an
expert integrates multimodal information such as visual, tactile, and planting location cues when performing
grading. Inspired by this, we propose an end-to-end Cross-modal Enhancement Network, named CMENet,
for automatic tobacco leaf grading. In addition to the common reflection image, the network also adopts
a transmission image to incorporate the thickness information in manual grading. CMENet comprises a
difference-aware fusion module and a meta self-attention module, enabling the extraction of multimodal
information from the transmission image and the planting location, respectively. Experimental results
demonstrate that our CMENet achieves a high grading accuracy (80.15%) when incorporating multimodal
information, surpassing the performance of existing methods that rely solely on reflection images.

INDEX TERMS Tobacco leaf grading, image classification, convolutional neural network, cross-modal
information fusion.

I. INTRODUCTION
Tobacco leaf grading is very important to the tobacco
production process [1]. Because of its agricultural impor-
tance, tobacco grows in more than 100 countries, consumed
as cigarettes, cigars, snuff, etc. [2], [3]. To maintain the
quality of production, it is essential to categorize the tobacco
leaves after re-drying. The grading is commonly achieved
by assessing the visual appearance of the leaves, which
is intricately related to the intrinsic quality of the tobacco
leaves [1].

The associate editor coordinating the review of this manuscript and

approving it for publication was Wenming Cao .

Manual grading has dominated the tobacco leaf assessment
process for a very long period [4]. Experienced experts assess
tobacco leaves based on visual, olfactory, and tactile cues,
as well as information regarding their planting locations.
Experts consider multiple factors during the grading process,
contributing to a high degree of accuracy. However, there are
several limitations in manual grading. First, the scarcity of
experts fails to meet the increasing demand for tobacco leaf
grading. Second, inexperienced staff demonstrate subjective
discrepancies due to the reliance of grading on human
sensory perception [5]. As shown in Fig. 1 and Fig. 2, the
different grades of reflection images have visual similarities
while the same grade from different planting locations dis-
plays inconsistent visual appearances. These inconsistencies
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FIGURE 1. Reflection and transmission images of tobacco leaves at different grades. The reflection images of three grades
(‘‘X3L’’, ‘‘X2F’’, and ‘‘X4F’’) are visually similar, while the transmission images are perceptually quite different. These
tobacco leaves are from the same planting location ‘‘FJ-NP’’ (see Table 2).

FIGURE 2. Reflection and transmission images of tobacco leaves from the planting locations ‘‘FJ-NP’’, ‘‘LN-DD’’, and
‘‘GZ-TR’’ illustrate distinct visual appearances, despite belonging to the same grade ‘‘X3L.’’

significantly increase the risk of misclassification during the
grading process.

To overcome the limitations of manual grading, in recent
years several methods have been employed to achieve
automatic tobacco leaf grading. Previous works [6], [7],
[8], [9] have focused on extracting handcrafted features
and designing specific classifiers to perform tobacco leaf
grading. With the rapid development of deep learning,
some works have employed neural networks to improve
agricultural production efficiency, such as fruit counting [10],
leaf disease detection [11], plant recognition [12], etc. Deep
learning techniques have been applied in the development
of vision-based systems for automatic tobacco leaf grading
[5], [13], [14]. These methods rely solely on the reflection
image of the tobacco leaf as the input for their systems.
However, due to the presence of high visual similarity among

reflection images at different grades and the absence of
additional information used by experienced experts in the
manual grading process, the grading accuracy is affected.

In this work, inspired by the incorporation of additional
cues during manual grading, we intend to integrate multi-
modal information into our designed system. Compared to the
reflection images, transmission images contain information
about the thickness of tobacco leaves, the density of leaf
tissue, and variations in intracellular substances. Regions
with thinner tobacco leaves display increased brightness in
transmission images. Therefore, they can be used as comple-
mentary information to the reflection image, providing the
tactile information involved in manual grading. Furthermore,
it is observed that reflection images of the same grade show
visual variations attributed to dissimilarities in soil chem-
ical composition across different planting locations [15],
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FIGURE 3. The framework of our cross-modal enhancement network (CMENet) for tobacco leaf grading.

as shown in Fig. 2. Consequently, relying solely on reflection
images is inadequate for achieving automatic tobacco leaf
grading.We aim to improve the performance by incorporating
complementary information such as transmission images and
metadata of planting location.

Based on the above analysis, we propose an end-to-end
cross-modal enhancement network, named CMENet, for
automatic tobacco leaf grading. The framework of CMENet
is illustrated in Fig. 3. By incorporating the transmission
image and the metadata of planting location, our method
can overcome the visual inconsistency of sole reflection
image input. Specifically, we design two novel modules
for multimodal information fusion. The difference-aware
fusion module effectively aggregates the extracted features
from reflection images and transmission images at each
layer of the backbone network. The meta self-attention
module for grading further enhances feature representations
by incorporating metadata of planting location. With these
modules, CMENet can distinguish the inconsistencies in
the visual appearance of tobacco leaves at the same grade
caused by different planting locations, and capture the
subtle differences among tobacco leaves of different grades.
In summary, the main contributions of this work are as
follows.

• We propose a novel Cross-modal Enhancement
Network, named CMENet, for automatic tobacco leaf

grading. CMENet has three inputs, including reflection
image, transmission image, and metadata of planting
location.

• We specially design two novel modules to fuse
multimodal information. These modules are used to
effectively integrate features related to leaf thickness and
planting location differences.

• The evaluation on our self-collected dataset indicates
that CMENet can achieve a high grading accuracy
(80.15%) by incorporating multimodal information,
outperforming the current methods using only reflection
images.

The rest of the paper is organized as follows. Section II
reviews the related work. Section III presents the framework
and details of our CMENet. Section IV discusses the
experimental results. Finally, Section V concludes this
work.

II. RELATED WORK
This section provides a brief review of the work related to the
application of deep learning in agriculture, automatic tobacco
leaf grading, and multimodal information fusion.

A. APPLICATIONS OF DEEP LEARNING IN AGRICULTURE
Deep learning is a technical tool with broad application
prospects and plays an important role in the field of image
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recognition [16]. Convolutional neural networks (CNNs),
which constitute a specific class of deep learning, demon-
strate excellent performance in extracting image features,
rendering them well-suited for image classification tasks
[17]. CNNs have been successfully applied in diverse
domains [18], and their application has recently extended
to the field of agriculture as well [19]. For example,
Lin et al. [20] design a lightweight residual network to trace
the quality of soybean from different origins. Zeng et al. [21]
adopt LeNet to identify pears with different damage levels.
Dyrmann et al. [22] adopt VGG16 to classify weeds from
crop species based on 22 different species in total. Some
works employ CNNs to conduct image classification and
recognition tasks, such as plant species identification [23],
leaf disease detection [11], and fruit counting [24]. Some
works employ CNNs to predict future values of agricultural
products, such as crop yield production [25] and the estima-
tion of field soil moisture content [26]. Recently, transformer
[27] is proposed in [28] tomodel sequential data in the field of
NLP. Vision Transformer (ViT) [29] andmany other ViT vari-
ants [30], [31], [32] are proposed from then, which achieve
promising performance compared with its counterpart CNNs
for image analysis tasks. Deep learning have demon-
strated significant potentials in agricultural production such
as productivity, environmental impact, food security, and
sustainability [33].

B. AUTOMATIC TOBACCO LEAF GRADING
Many previous works [1], [7], [8], [9] conduct automatic
tobacco leaf grading via image processing. For example,
Thomas [8] first applies image processing techniques in
tobacco leaf grading. Cho et al. [9] extract the shape,
appearance, and other features of tobacco leaves for grading
purposes. Zhang et al. [1] develop an automatic grading
method for tobacco leaves based on the nearest neighbor
algorithm. Zhang and Zhang [7] further improve the accuracy
of automatic tobacco leaf grading by combining machine
vision with fuzzy set theory. Because of the high visual
similarity among reflection images at different grades,
traditional approaches cannot achieve high grading accuracy.
With the development of deep learning, recent works
[5], [14], [34] have adopted various architectural neural
networks to accomplish automatic tobacco leaf grading.
For example, Luo et al. [14] adopt AlexNet and hard
example mining to improve the grading accuracy based
on the color, shape, texture, and other extracted features
from reflection images. Li et al. [34] employ VGG16 and
transfer learning to achieve automatic tobacco leaf grading.
Lu et al. [5] adopt an improved ResNet for automatic
tobacco leaf grading. We notice that almost all previous
works use only the tobacco leaf image and neglect the
additional cues (e.g., leaf thickness and planting locations)
that experienced experts always adopt in manual grading
process [35].

C. MULTIMODAL INFORMATION FUSION
Multimodal information fusion refers to the integration of
information from different sensors or modalities to obtain a
more comprehensive, accurate, and reliable understanding.
It has been widely applied in various fields. For example, the
integration of patient images and clinical information can aid
in the diagnosis of Alzheimer’s disease within the medical
domain [36]. Within the realm of autonomous driving,
remarkable advancements have been made by combining
data from LiDAR (Light Detection and Ranging) sensors and
RGB cameras [37].
In the field of tobacco leaf grading, the quality of the

leaves is mainly determined by their chemical composition
that can be significantly influenced by the planting region.
Considering that geographic factors have a significant
influence on leaf quality, Jiang et al. [15] employ NIR
spectroscopy to classify tobacco leaves originating from
distinct growing areas. Tang et al. [38] conduct a detailed
analysis to explore the relationship between the natural
conditions of the tobacco leaf cultivation environment and
its chemical composition. Li et al. [39] suggest that incor-
porating multimodal information such as hyperspectral data
into tobacco leaf grading would be a future research trend.
Although previous works have demonstrated the significant
impact of different modalities of information on tobacco leaf
quality, they have not been specifically used in automatic
tobacco leaf grading.

III. METHOD
A. CMENET FRAMEWORK
Figure 3 shows the framework of our CMENet. CMENet
takes reflection image IR ∈ RH×W×3, transmission image
IT ∈ RH×W×3, andmetadata of planting locationML ∈ R1×1

as input. CMENet mainly consists of three modules, i.e.,
symmetric feature extractor (SFE), difference-aware fusion
(DAF) module, and meta self-attention (MSA) module for
grading. SFE extracts the reflection image feature FR ∈ R1×c

and transmission image feature FT ∈ R1×c. The DAFmodule
fuses the feature map extracted by each layer. The MSA
module aggregates the image feature FR, image feature FT,
and metadata of planting location ML, and finally obtain
grading prediction Y ∈ R1×N .

B. SYMMETRIC FEATURE EXTRACTOR (SFE)
Traditional CNNs framework on image classification typ-
ically only accommodates a single image input. Due to
the significant visual distinctions between reflection and
transmission images, adopting a shared-weight network may
not be suitable for the feature extraction stage. Inspired
by symmetrical architecture of other networks such as
SEDRFuse [40] and Siamese CNN [41], we specially design
a dual-branch feature extract network for feature extraction to
mutually promote the learning for features of both reflection
and transmission images. However, our SFE module is
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different to [40] and [41] in that the two pathways in SFE
do not share weights.

The architectures of the two branches is symmetric,
ensuring that the feature extracted from reflection and
transmission images have a consistent size.We adopt ResNet-
34 [42] as the backbone of this module, because ResNet-
34 achieves the optimal balance between accuracy and
inference latency among all well-known backbone network
(see Table 4). The SFE module EF(·) takes the tobacco
leaf reflection image IR and the transmission image IT as
inputs, to extract the reflection and the transmission feature
maps, respectively. The whole process can be mathematically
formulated as

FR,FT = {EF(IR),EF(IT)}, (1)

whereFR andFT represent the reflection and the transmission
feature maps yielded by SFE, respectively.

C. DIFFERENCE-AWARE FUSION (DAF) MODULE
Unlike the common strategy adopted in information fusion,
in which no cross-modal information is exchanged in the
model until after the classifier [43], our difference-aware
fusion (DAF) module achieves the feature exchange between
two pathways. The key idea of our DAF module is to
leverage channel weighting to fully integrate global context
for both reflection and transmission images because of their
complementary nature.

It is known that ResNet-34 is composed of several
stacked layers, including five convolutional layers (conv1,
conv2_x, conv3_x, conv4_x, conv5), a pooling layer,
and full connection layer. Specifically, we denote FiR ∈

Rhi×wi×ci and FiT ∈ Rhi×wi×ci as the feature tensors yielded
from the i-th convolutional layer of SFE.

Since the reflection and transmission images are from
the same tobacco leaf but different lighting conditions, the
reflection image emphasizes color and texture features while
the transmission image emphasizes leaf thickness and veins.
Mathematically, we compute the common part as

Ficomm =
FiR + FiT

2
, (2)

and compute the complementary part as

Ficomp =
FiR − FiT

2
. (3)

In the DAF module, we adopt the element-wise minus
to obtain the complementary part, thereby enhancing the
common part feature in the subsequent procedures.

The goal of the DAF module is to fully integrate the
common and complementary information from the features
FiR and FiT extracted at different layers of the SFE. We extract
the feature maps of the complementary part as

vdiff = σ (GAP(FiR − FiT)), (4)

where the symbol σ (·) denotes the sigmoid activation
function, GAP(·) represents global average pooling, and

vdiff ∈ R1×C refers to the complementary features. In (4),
the global average pooling compresses the complementary
features into a vector vdiff that captures the discrepancy
between the features of reflection and transmission images.

Then, we employ an one-dimensional convolution and
a fully connected layer to generate two channel-weighted
vectors that enhance the original features of both the
reflection and transmission images. These weighted vectors
are normalized to a range of [0, 1] using the sigmoid
activation function. Finally, the complementary features are
multiplied by the normalized channel weights and added to
the original features. The enhanced reflection image feature
F̂iR can be formulated as

F̂iR = FiR ⊕ σ (f (WR ∗ vdiff)) ⊙ (FiR − FiT), (5)

where ⊕ and ⊙ denotes element-wise addition and channel-
wise multiplication, respectively. f (·) denotes fully connected
layers, WR denotes the parameters of the one-dimensional
convolution, and ∗ denotes the operation of convolution.
In the same way, the enhanced transmission image feature

F̂iT can be mathematically formulated as

F̂iT = FiT ⊕ σ (f (WT ∗ vdiff)) ⊙ (FiR − FiT), (6)

where WT denotes the parameters of the one-dimensional
convolution.

D. META SELF-ATTENTION (MSA) MODULE FOR GRADING
The meta self-attention (MSA) module for grading is
designed to further enhances feature representations by
incorporating metadata of planting location.

We obtain the reflection image feature FR ∈ R1×c,
transmission image feature FT ∈ R1×c, and metadata of
planting location feature FL ∈ R1×c through the SFE and
position encoding layer, respectively. The position encoding
layer is a fully connected layer, encoding the metadata
ML into a feature vector FL. These three features are
from different modalities. We concatenate them together
to obtain a multimodal feature F ∈ R1×3c. We adopt
the self-attention mechanisms [28], [44], which effectively
capture non-local contextual information, in designing our
meta self-attention (MSA) module based on the multi-head
self-attention (MHSA) module.

The j-th head attention matrix Aj is computed as

Aj = softmax(
WQ

j F(W
K
j F)

T

√
dk

)WV
j F, (7)

where dk ∈ R1×(c/H ) denotes the scaling parameter, WQ
j ,

WK
j , andW

V
j are the j-th head learnable parameter matrixes.

Then, we concatenate each head Aj as output,

A = concat(A1, . . . ,Aj, . . . ,AH )WO (8)

where WO denotes the parameter matrix of the output linear
layer, and H denotes the number of heads of MHSA.

Finally, we add theA to the multimodal feature F as output
and pass it to the multilayer perceptron (MLP) to predict the
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grade of tobacco leaf. The output of the MSA module for
grading can be described as

Y = MLP(A + F), (9)

where Y ∈ R1×N denotes the one-hot encoding of the grade,
with N denoting the total number of grades.

E. LOSS FUNCTION
In practice, the numbers of tobacco leaves in different grades
are imbalanced (see Table 1). We adopt the weighted cross
entropy loss function that assigns higher weights to samples
from the minority class during training,

LWCE=−
1
N

N∑
k=1

wkyk log ŷk+(1 − yk ) log(1−ŷk )+γ ∥W∥2,

(10)

where yk and ŷk denote the actual and predicted grades,
respectively. wk is the weight assigned to the k-th class. N is
the total number of grades of tobacco leaf. γ is the coefficient
to control the trade-off between the cross-entropy loss and
the regularization term. ∥ · ∥2 denotes the L2 norm to prevent
network overfitting.W represents all the learnable parameters
of CMENet.

IV. EXPERIMENTS
In the experiments, we conduct detailed performance eval-
uations of our CMENet and other methods on the self-
collected dataset. We first present our dataset construction,
experimental configurations, and implementation details.
Then, we compare and analyze the grading accuracy of
our approach against current methods. Finally, we conduct
ablation studies to validate the effectiveness of our network
design.

A. DATASET
We note that there are no public datasets that can meet our
tobacco leaf grading task conducted in this work. Therefore
we establish a multimodal image data acquisition system
specifically for tobacco leaves, which seamlessly integrates
device control functions with automatic tobacco leaf grading
software. As illustrated in Fig. 4, the system mainly
comprises two cameras and two light sources. To prevent the
interference of external ambient light, all images are captured
within a sealed environment. The light source of the system is
provided by LEDs and halogen lamps positioned within the
black cabinet, ensuring consistent lighting conditions when
acquiring images.

Bottom illumination is essential to capture transmission
images. To ensure the smooth movement of tobacco leaves,
the transmission area is kept relatively small. Consequently,
the complete transmission image is obtained by stitching
multiple images together.

Our tobacco leaf dataset consists of 9799 reflection images
and 9799 transmission images. The grades of tobacco leaves

TABLE 1. The 29 grades of tobacco leaves and their corresponding
numbers of samples in our dataset.

follow the GB2635-94 standard of China [45]. These tobacco
leaves are categorized into 29 grades. Table 1 provides
a comprehensive list of the 29 grades along with their
corresponding numbers of tobacco leaves. As in practical
applications, the sample numbers of different grades are
imbalanced. For example, the highest quantity grade (X3L)
consists of 1880 samples, while the lowest quantity grade
(X1F) has only 33 samples.

Our dataset comprises tobacco leaves collected from
24 different planting locations across China. Table 2,
presents a comprehensive overview of the planting locations,
including their abbreviations, full names, and corresponding
numbers of tobacco leaves. For instance, ‘‘FJ-NP’’ cor-
responds to the Nanping City in Fujian Province, where
1799 tobacco leaves have been collected.

B. EXPERIMENTAL SETUP
We implement our CMENet using Pytorch1.12.0. All the
experiments are performed on the Ubuntu 20.04.1 LTS
operating system, equipped with an Intel(R) Xeon(R) Gold
6226R CPU and NVIDIA GeForce RTX 3090 with 24
GB VRAM. Only the weight parameters of ResNet-34,
which serves as the backbone network, are initialized with
pre-trained ResNet-34 weights from ImageNet before start
training. The parameters of other components of TCENet,
such as SFE, DAF, and MSA, will be updated as the network
undergoes training. The weights in (10) are set inversely
proportional to the class frequencies, meaning that the less
frequent classes are assigned higher weights. The coefficient
γ is set to 0.0009. In the training stage, we use the Adam
optimizer with an initial learning rate of 0.0003. The learning
rate follows an exponential decay strategy, which is adjusted
to 0.9 times the current value after 30 epochs. The batch size
is set to 32. The network was trained for a total of 150 epochs,
and as shown in Fig. 5, it has converged quite well.

We randomly select 7839 tobacco leaf samples from our
dataset as the training set and 1960 samples as the test set,
ensuring a similar class distribution between the training and
testing sets. Both reflection and transmission images are of
size 428 × 286 pixels.

109206 VOLUME 11, 2023



Q. He et al.: CMENet for Tobacco Leaf Grading

FIGURE 4. The multimodal imaging data acquisition system for tobacco leaves. (a) Schematic diagram, (b) Real system.

TABLE 2. The 24 distinct planting locations and corresponding numbers of tobacco leaves in our dataset.

C. EVALUATION METRICS
We evaluate the performance of our CMENet and other
existing approaches using four indicators, including testing
accuracy rate, recall rate, precision rate, and F1-score. The
accuracy rate measures the ratio of correct predictions over
the total number of instances evaluated. It is computed as

Accuracy =
TP + TN

TP + FP + TN + FN
, (11)

where TP and TN denote the number of positive and
negative instances that are correctly classified, respectively.
FP and FN denote the number of misclassified positive and
negative instances, respectively. The recall rate measures the
number of correctly graded samples selected by the classifier,
computed as

Recall =
TP

TP + FN
. (12)

The precision rate shows the percentage of all the corrected
grading samples in all the selected samples by the classifier,
computed as

Precision =
TP

TP + FP
. (13)

F1-score aggregates precision and recall measures under the
concept of harmonic mean, computed as

F1-score = 2 ×
Precision × Recall
Precision + Recall

. (14)

FIGURE 5. The trend of CMENet in loss for the training set and validation
set.

D. EVALUATION OF FUSION STRATEGY
We explore the influence of using different fusion strategies
on grading performance, including direct concatenation,
element-wise multiplication, low-rank multimodal fusion
[46], and autoencoder [47]. The low-rank multimodal fusion
(LMF) approach adopts low-rank matrix decomposition of
the weights. It transforms the combination of tensor outer
product and fully connected layers into individual linear
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TABLE 3. The accuracy (Acc), F1-score (F1), precision (Pre), and recall
(Rec) values of our strategy (DAF+MSA) and other multimodal fusion
strategies.

transformations for each modality, followed by the multidi-
mensional dot product. LMF can be regarded as a summation
of the results from multiple low-rank vectors, which can
effectively reduce the number of parameters in the model.
The autoencoder approach encodes all modality features and
then decodes them for reconstruction. Autoencoder aims to
capture the underlying latent representations shared across
different modalities.

Table 3 demonstrates that directly using concatenation
for multimodal information fusion leads to a decrease in
classification accuracy. In the context of tobacco leaf grading,
it is conjectured that fusion strategies employed in other
works, such as LMF and Autoencoder specifically designed
for multimodal feature fusion in domains like speech and
video, may not be suitable for this particular scenario.
In comparison, our fusion strategy (DAF+MSA) yields the
best performance for tobacco leaf grading.

E. RESULTS OF TOBACCO LEAF GRADING
We compare our CMENet with the backbone network used
for general image classification, including ResNet series [42],
ConvNeXt_tiny [48], CSPDarkNet53 [49], EfficientNet-B0
[50], InceptionV3 [51], VGG-13 [52], Swin Transformer
[30], Visformer [31] and MobileViT [32]. Considering the
limited size of our dataset, we adopt pre-trained weights from
the ImageNet [53] dataset to initialize all the models. The
grading performance of different methods on our dataset is
summarized in Table 4. In Table 4, apart from CMENet,
the input for other backbone networks consists solely of
reflection images. It can be observed that the performance
of transformer-based models with larger parameter sizes is
not satisfactory when fine-tuned on our dataset. ResNet-34,
on the other hand, demonstrates a good balance between
inference speed and accuracy. Thanks to the effective
integration of multimodal information, CMENet achieves
mediocre inference times but outstanding accuracy. Such
results revealing that the latency caused by multimodal inputs
is tolerable, and CMENet is feasible for designing a accurate
and real-time automatic tobacco leaf grading system in the
future.

We also compare our CMENet with the current deep
learning approaches used for existing automatic tobacco leaf
grading and plant classification, including Lu et al. [5],
Tang et al. [54], and Nasiri et al. [55]. Table 5 indicates that
our CMENet performs better than these competitors.

TABLE 4. The accuracy (Acc), F1-score (F1), precision (Pre), recall (Rec),
latency (LAT), and GFLOPs values of our CMENet and other backbone
networks.

TABLE 5. The accuracy (Acc), F1-score (F1), precision (Pre), recall (Rec),
latency (LAT), and GFLOPs values of our CMENet, the current tobacco leaf
grading and plant classification approaches.

TABLE 6. The grades and number of tobacco leaves with grading
accuracy above 90%, between 80% and 90%, and below 60%.

Figure 6 shows the confusion matrix of our CMENet. It is
observed that CMENet achieves good grading performance.
Table 6 further shows the grades and numbers of tobacco
leaves of three accuracy ranges, i.e., above 90%, between
80% and 90%, and below 60%. It is obverved that, despite
having a limited number of training samples, the grades
‘‘B4F’’ and ‘‘X1L’’ still achieve accuracy above 90%.
CMENet have good classification capabilities formost grades
with prefix ‘‘B’’ and ‘‘X’’, even though they have visually
similar appearances. However, CMENet does not perform
well on the grades ‘‘B1L’’, ‘‘B2V’’, ‘‘CX1K’’, ‘‘GY2’’, and
‘‘X1F’’. This indicates that our CMENet still have limitation
in extracting tobacco leaf features for certain grades.

F. ABLATION STUDY
We conduct ablation experiments with different inputs to
evaluate the impact of transmission images and metadata of
planting location on grading accuracy.
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FIGURE 6. The confusion matrix of CMENet.

TABLE 7. Ablation study of reflection image IR, transmission image IT,
and metadata of planting location ML on the inputs of CMENet.

Table 7 demonstrates the influence of incorporating
multimodal information on the accuracy of tobacco leaf

grading. Particularly, with the introduction of transmission
image, the accuracy improves from 76.68% (when using
only reflection images) to 78.62%. This highlights the
importance of leveraging multimodal information to capture
a comprehensive representation of the tobacco leaves.
In addition, we conduct testing by training the classification
model solely on transmission images, which results in a
grading accuracy of 45.61%. This confirms that transmission
image also carries grade information but itself is insufficient
for grading. Furthermore, the incorporation of metadata of
planting location leads to the best grading accuracy (80.15%).

We also conduct ablation experiments with coefficient
γ in (10). The coefficient γ allows CMENet to control
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FIGURE 7. The impact of the coefficient γ on the accuracy of CMENet.

the relative importance of the weighted cross-entropy loss
and the regularization term during training. By adjusting
the value of γ , we can effectively balance the impact
of the two components on the overall training process.
As shown in Fig. 7, when the coefficient γ is set to
0.0009, the balance between weighted cross-entropy and
regularization term is optimal, resulting in the highest model
accuracy.

V. CONCLUSION
In this work, we have introduced a novel cross-modal
enhancement network, named CMENet, for tobacco leaf
grading. Inspired by the manual grading process, the network
incorporates multimodal information as input, including
reflection image, transmission image, and metadata of
planting location. By introducing multimodal information,
CMENet achieved an increase in grading accuracy from
76.68% to 80.15%. Extensive experiments show that it
outperforms the state-of-the-art approaches that use only
reflection images. As CMENet achieves a fast inference times
(10.58 ms) and a high grading accuracy, it has potential in
practical applications.
Limitations: The multimodal data employed in this work

are still insufficient for tobacco leaf grading. It is known
that the chemical composition of the tobacco leaf is also
relevant to grading. In our future work, we will develop a
near-infrared multispectral imaging system to acquire the
chemical composition, aiming to further improve grading
accuracy.
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